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Gli effetti del cambiamento climatico nelle aree semiaride si manifestano in eventi di siccità 
che influenzano le falde acquifere, la cui ricarica è strettamente dipendente dalle precipitazioni. 
L’obiettivo di questo studio è quello di valutare la relazione tra profondità delle acque sotterranee 
(DTW), precipitazioni, Normalized Difference Vegetation Index (NDVI) e la temperatura 
superficiale del suolo (LST), nelle falde acquifere alluvionali di Mostaganem Plateau, Algeria nel 
2000, 2005, 2010-2011 e 2014-2015. L’analisi è stata condotta utilizzando una metodologia che 
integra il telerilevamento, i Sistemi Informativi Geografici (GIS) e l’analisi statistica: analisi di 
correlazione e modelli di regressione lineare multipla (MLR). I risultati indicano un calo di 62mm 
nelle precipitazioni dal 2000 al 2015 inducendo cambiamenti nei pattern spaziali. Ciò ha provocato 
un aumento di DTW (4m a 10m). Una significativa correlazione negativa tra la riduzione delle 
precipitazioni e l’incremento della DTW, confermata da un valore R2 di -0,80, è evidente. I valori 
di NDVI e LST sono incrementati rispettivamente di 0,034 e di 3,38 °C. Le relazioni tra DTW, 
NDVI e LST hanno evidenziato una correlazione negativa decrescente. La MLR ha confermato 
l’influenza delle precipitazioni evidenziando inoltre l’impatto dell’attività umana sull’efficacia 
degli indicatori DTW e siccità. Alti valori di NDVI hanno indicato un pompaggio intensivo 
delle acque sotterranee, mentre un elevato LST ha contribuito alla diminuzione di DTW a causa 
di una maggiore velocità di evaporazione causata da cambiamenti nei tipi di colture derivanti da 
azioni umane. Questo studio contribuisce alla comprensione delle interazioni dinamiche tra DTW, 
precipitazioni e attività antropogeniche e fornisce informazioni ai decisori in materia di strategie 
di irrigazione.

Effects of climate change in semi-arid areas occur in drought events, which affect aquifers whose recharge 
depends essentially on precipitation. The objective of this study is to evaluate the relationship between depth 
to groundwater (DTW), precipitation, Normalized Difference Vegetation Index (NDVI) and Land Surface 
Temperature (LST), in the alluvial aquifer of Mostaganem Plateau, Algeria over 2000, 2005, 2010-2011 
and 2014-2015. This is caried out through an adaptive methodology, using remote sensing, Geographic 
Information Systems (GIS), and statistical analysis: correlation analysis and Multiple Linear Regression 
(MLR). The results indicate a 62 mm decline in precipitation from 2000 to 2015, inducing shifts in spatial 
patterns. This resulted in an increase of DTW (4 m to 10 m). The strong negative correlation between 
decreased precipitation and increased DTW, supported by an R2 value of -0.80, is evident. Moreover, 
NDVI and LST values increased notably by 0.034 and 3.38°C, respectively. The relationship between 
DTW, NDVI, and LST showed a diminishing negative correlation. The MLR reaffirmed the influence of 
precipitation and highlighted the impact of human activity on DTW and drought indicators effectiveness. 
High NDVI values indicated intensive groundwater pumping, while elevated LST contributed to DTW 
decrease due to increased evaporation rates caused by changes in crop types resulting from human actions. 
This study contributes to the understanding of the dynamic interactions between DTW, precipitation, and 
anthropogenic activities and gives insight to decision makers regarding irrigation strategies. 
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Introduction
Groundwater sustains multiple aspects of human and 

ecological systems. Recent advancements in hydrological 
science, such as the work by (Birylo, 2020; Lu et al., 2021; 
Thomas et al., 2016), have furthered our understanding 
of how climate change is altering the global water cycle. 
These studies reveal significant trends affecting water 
availability, emphasizing the urgency of adapting our water 
management strategies to ensure sustainability amid evolving 
environmental conditions.  The  latest Intergovernmental 
Panel on Climate Change  reports underline the escalating 
global climate crisis, which is intensifying extreme weather 
events in Africa, as a result of anthropogenic climate change 
(IPCC, 2023). Further, the projected decline in precipitation 
and the prolonged arid periods in north Africa will have 
an impact on surface water resources, thereby leading to a 
greater dependence on groundwater (Tramblay et al., 2020). 
In fact, the last thirty years, Algeria have seen a surge in 
water demand attributed to population migration driven by 
rising temperatures (Stambouli et al., 2016). This has led to 
the densification of urban areas, resulting in decreased runoff 
and infiltration (Touitou & Abul Quasem, 2018). Moreover, 
the recent occurrences of heatwaves and droughts in North 
African regions during spring and summer 2023, Algeria 
included, serve as tangible manifestations of the effects of 
climate change (Oxford Analytica, 2023; Philip et al., 2023).

The relationship between climate change and groundwater 
levels is crucial for effective groundwater management, 
especially in arid and semi-arid regions where meteorological 
droughts is of increasing concern (Barkey & Bailey, 2017; 
Fistikoglu et al., 2016; Henrique et al., 2020). (Barkey & 
Bailey, 2017) observed that drought episodes have depleted 
approximately 55% of the water storage of the aquifers in 
the Marshall Islands. In California’s Central Valley, where 
irrigation primarily depends on groundwater, (Liu et al., 
2022) noted that during drought periods, water allocated for 
irrigation fell below 50% in 12 out of the 18 years studied.  
And throughout the last fifty years, north African countries 
proved to be exceptionally vulnerable to climate change and 
endured several severe droughts, including those in the 1940s, 
1980s, and present period (Abdelhamid et al., 2023; Madene et 
al., 2023; Ndehedehe et al., 2023; Tramblay et al., 2020). These 
droughts have led to a massive population movement from 
south to north, inducing a rise of urban area (Ceola et al., 2023).

Studies by (Jasechko et al., 2024; Ngo et al., 2024) 
demonstrate the susceptibility of alluvial aquifers to 
precipitation decline, emphasizing their reliance on consistent 
meteorological inputs, disrupted precipitation patterns, and 
increased evapotranspiration rates. These findings are crucial 
for devising effective strategies to preserve and manage 
groundwater resources in impacted areas. Additionally, a 
growing body of literature explored the relationship between 
precipitation and Depth To Groundwater (DTW) in semi-
arid regions (Nassery et al., 2021; Tabari et al., 2012; 
Tsuyuguchi et al., 2020; Venkatesan et al., 2021). While 
previous studies have established frameworks for assessing 

the influence of precipitation on groundwater resources, they 
often necessitate long temporal series. In response to this 
limitation, there is a growing trend in utilizing remotely 
sensed indices such as the Normalized Difference Vegetation 
Index (NDVI), Normalized Difference Water Index 
(NDWI) and Land Surface Temperature (LST) for evaluating 
groundwater depletion (Pei et al., 2019; Song et al., 2021; 
Zhang & Wang, 2020). Nevertheless, groundwater drought 
assessment demands a more comprehensive approach beyond 
these two parameters, especially in agricultural regions 
like Mostaganem Plateau where groundwater is intensively 
pumped. Using a GIS induced correlation and multiple linear 
regression (MLR) among DTW, precipitation, and remote 
sensing indices offers a holistic perspective for evaluating 
these variables relationships and interactions. 

In this study, we attempt to evaluate the potential 
relationship between DTW, precipitation, NDVI and LST, 
in the alluvial aquifer of Mostaganem Plateau, within the 
context of climate change, through correlation in QGIS and 
multiple linear regression (MLR), for the years 2000, 2005, 
2010 and 2014. This approach will allow us to understand 
the dynamic relationship of these parameters in an intensive 
agricultural region. The adoption of this methodological 
approach is prompted by the paucity of available data. As far 
as the authors are aware, there are no studies investigating the 
effect of climate change on DTW and its relationship with 
NDVI and LST in this region.  The presented methodology 
will provide decision-makers with crucial insights into 
the refinement of irrigation strategies, thereby facilitating 
informed and strategic planning for proactive interventions.

Site study
The Geographic and Climatic Situation

The study region is located in the northwest part of Algeria, 
along latitude 35° 45’ 58.5” - 36° 0’ 49.5”N and longitude 0° 
0’ 14.49” - 0° 26’ 34.5”E (Fig. 1). The Mostaganem Plateau 
covers an area of 700 km2 and is mostly used for agriculture 
(65%). It is bordered by the Mediterranean Sea to the west, the 
Ennaro and Belhacel mountains to the east, the Cheliff River 
to the north, and the Bordjias plain to the south. The terrain 
elevation declines from east to west with elevations ranging 
from 338 m to 10 m, and is affected by NE-SW oriented 
ripple lines. Due to its proximity to the Mediterranean Sea, 
the climatic characteristics are similar to the predominant 
climate in the Mediterranean region of North Africa, 
characterized by a semi-arid climate with mild, wet winters 
and hot, dry summers. Since 1990, a recent dry period has 
resulted in an average annual temperature of around 19.4 
°C and an annual average precipitation of approximately  
281 mm from 1990 to 2015 (Benfetta & Ouadja, 2020).

Geology and hydrogeology context
The main aquifer on the Mostaganem plateau is essentially 

located in Plio-quaternary sandstones and sands. This 
watertable aquifer rests on the low permeability marl 
formations of the Lower Pliocene and Miocene formations, 
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Fig. 1 - Location and elevation 
map of Mostaganem Plateau, and its 
delimitation according to Baiche et 
al., 2015.

Fig. 1 - Ubicazione e carta 
altimetrica del Mostaganem 
Plateau, e sua delimitazione 
secondo Baiche et al., 2015.

Fig. 2 - Geology and delimitation of 
Mostaganem Plateau aquifer based on 
the geological map of Algeria by general 
government of Algeria 1951-1952, second 
edition. 

Fig. 2 - Geologia e delimitazione 
dell’acquifero del Mostaganem Plateau, 
basate sulla carta geologica dell’Algeria 
del governo generale dell’Algeria 1951-
1952, seconda edizione.

with a thickness ranging between 100 and 200 m, decreasing 
from east to west, an average depth to water table ranging 
from 4 to 10 m  (Baiche et al., 2015; National Agency of 
Water Resources, 1975).  

The aquifer primarily recharges from its impluvium and 
was exploited by over 201 wells in 2000, 57 springs, and 
monitored by 16 piezometers. The region has two main rivers: 
Ain Sefra and Kheir rivers that mainly feed on the aquifer due 
to scarce precipitations, the drainage system is very poorly 
developed (Benfetta & Ouadja, 2020). The region is mostly 
characterized by synclinals that promote the accumulation of 
precipitation water. Additionally, permeability measurements 
range from 1.10-4 to 7.5.10-4 m/s, with the highest values 

observed in a distinct V-shaped zone south of Ain Tedles, 
and varying significantly across other regions influenced by 
lumachellic formations (Bellal et al., 2020). The average 
transmissivity is 0.8.10-5 m2/s, according to the piezometric 
investigations of 1975 (Benfetta & Ouadja, 2020), From  
(Fig. 3), the flow is from North-east to west. Overall, the flow 
converges toward the regions of Mesra and Ain Nouissy. The 
south-eastern and central parts have two domes, resulting in 
localised recharge zones. In the south and south-west, there 
are four depressions, reflecting localised drainage. These areas 
of drainage can be explained by over-exploitation of this part 
of the water table. The density of the contour lines in the 
south and the west, indicates a fairly steep hydraulic gradient.
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Fig. 4 - Flowchart illustrating pre-processing steps employed in this study.

Fig. 4 - Flusso di lavoro che illustra le fasi di pre-elaborazione dei dati.

Materials and Methodology
This section pertains to the materials utilized in the 

research, the data preprocessing procedures (Fig. 3), and the 
methodological framework(Fig. 4) employed in the study.

Precipitation and groundwater: dataset collection and 
pre-processing

Precipitation and DTW, obtained from past site 
investigations by the “Algerian Water Agency” (ANRH), 
comprise data from 10 weather stations and 16 piezometers. 
The hydrologic year classification, starting in September 
and ending in August, was applied to both DTW and 
precipitation.  Due to monitoring constraints, the study 
focused on the periods: September 2000 – August 2001, 
September 2005 – August 2006, September 2010 – August 
2011, and September 2014 – August 2015. 

For precipitation and DTW, spatial distribution mapping 
and yearly mean calculation were performed using inverse 
distance weighted (IDW) interpolation in GIS. IDW was 
selected for its dependence on maximum neighbouring 
observations, improvement of predictions at unsampled 

Fig. 3 - Piezometric map for the 
year 2005.

Fig. 3 - Carta della piezometria 
relativa all’anno 2005.

locations, and reduction of errors, as highlighted by 
(Ikechukwu et al., 2017). Additionally, (Keblouti et al., 2012) 
identified IDW as the optimal method for interpolating 
precipitation and groundwater data in Algerian basins..

Remote sensing applications in drought detection: 
dataset collection and pre-processing

This study uses remotely sensed indices NDVI and LST 
as drought indicators, which are widely used in arid and 
semiarid regions for drought detection. Their suitability for 
low latitude and elevation regions, deems them applicable for 
the study region (Karnieli et al., 2010).

Google Earth Engine (GEE), an online platform for remote 
sensing analyses, facilitated NDVI and LST calculations. 
Initial cloud correction, involving JavaScript adjustments 
for NIR and RED bands from Landsat 5 TM Collection 2 
and Landsat 8 OLI Collection (Tab. 1). Then, the NDVI was 
calculated using the “raster calculator” in QGIS 3.22. 

  

NIR REDNDVI
NIR RED

−
=

+  (1)
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Fig. 5 - Flowchart illustrating the methodology employed in this study.

Fig. 5 - Flusso di lavoro che illustra la metodologia impiegata in questo studio.

Further, LST was calculated using GEE platform and 
JavaScript code (Ermida et al., 2020) repository (https://
earthengine.googlesource.com/users/sofiaermida/landsat_
smw_lst) from NDVI imagery. The LST datasets were 
exported in raster format to align with precipitation data 
resolution for consistent integration. The accuracy of the LST 
is evaluated by comparing the root mean square error (RMSE) 
with the MODIS LST dataset (MOD11A2.061 Terra Land 
Surface Temperature and Emissivity) (Wan, 2014).

Satellite tM-landsat 5 oli-landsat 8

Bands 
NIR:  Band 4
RED: Band 3

NIR:  Band 5
RED: Band 4

Wavelength (µm)
NIR:  0.76 - 0.90
RED: 0.63 - 0.69

NIR: 0.85-0.88
RED: 0.64-0.67

Resolution (m) 30 30

Tab. 1 - Satellites and bands used in NDVI calculation.

Tab. 1 - Satelliti e bande usate per il calcolo del NDVI.

Methodological framework for evaluating precipitation, 
DTW, NDVI, and LST relationships

A common way to identify relationships between factors 
and their mutual influence on one another is the use of 
geostatistical methods. This paper assesses the interrelation 
of specified parameters using QGIS 3.22’s “create grid” 
processing tool (Van DenHooven, 2020), applying raster 
values to the grid’s centroid. Correlation analysis utilizes the 
geometric tool and the “Data Plotly” plugin. This spatial 
correlation employed a pixel-by-pixel correlation approach, 
where we compared the values of the raster datasets on a per-
pixel basis. Applying an adaptive QGIS methodology used 
by (Venkata Sudhakar et al., 2022), we correlate satellite 
imagery outputs in this study. Subsequently, we conducted 
a Multiple Linear Regression (MLR), an extension of simple 
linear regression predicting variable values using two or more 
variables (Liou & Mulualem, 2019). It determines the overall 
fits of the model and the contribution of each predictor to the 
variance. MLR is applied in this study to evaluate DTW’s 
susceptibility to precipitation in the alluvial aquifer of the 
plateau and to explore the relationship between DTW, NDVI, 
and LST for drought detection. The mathematical expression 
on a MLR model with k predictors is as follows (Holder, 1985; 
Nimon & Oswald, 2013):                           

 0 1 1 2 2 ...... k ky x x xβ β β β ε= + + + +
 (2)

Where i=1, 2,…,k; ε is the residual term of the model; 
y is the dependent variable (DTW); x is the independent 
variable (precipitation, NDVI, LST); β0 is the intercept, 
and β1, β2,…, βk are the coefficient of xi. This method was 
considered linear because groundwater responds linearly to 
precipitations in unconfined aquifers (F. Hussain et al., 2022). 
The nearest neighbour method in QGIS 3.22 was used to 
uniformly resample (30 m) the raster images to maintain 
spatial representation and alignment across layers and avoid 
interpolation variable effects. This resampling step ensures 

relationship analysis accuracy and reliability (Alsamadisi et 
al., 2020).

Results and discussion
This section presents the main findings of the study, 

which focuses on assessing the impact of climate change on 
DTW variations, precipitation patterns, NDVI, and LST. It 
also discusses the impact of anthropogenic activities on the 
sensitivity of NDVI and LST in detecting drought conditions. 

Evaluating precipitation’s impact on DTW
The yearly minimum and maximum for each period of 

precipitation and DTW are provided in (Tab. 2). From 2000 
to 2006, the amount of precipitation was most pronounced 
in the northwest and central areas of the plateau, gradually 
decreasing as it spread outward from the centre (Fig. 6 a 
& b). During this same period, the study area’s southern, 
southeastern, and central northern regions exhibited high 
DTW values, while the lowest values were observed in the 
south and coastal areas (Fig. 7 a & b). 

Precipitation (mm) DtW (m)

Min Mean Max Min Mean Max

2000-2001 301.71 413.88 526.59 3 16.49 29.99

2005-2006 283.52 390.55 497.6 4.23 15.35 26.48

2010-2011 297.72 361.03 424.34 6.77 17.97 29.17

2014-2015 280.9 351.89 422.89 8.65 19.69 30.73

Tab. 2 - Inter-annual comparison of P and DTW.

Tab. 2 - Confronto inter-annuale di P e DTW.

In 2010–2011, precipitation rise near Ain Tedles, Ain 
Boudinar, Mostaganem, and Mazagran coincide with the 
increase in DTW in the southern plateau (Fig. 6. c). However, 
Ain Tedles and Oued El Kheir displayed lower DTW levels. 
The southwestern region, including Hassi Mamèche, south, 
and east of Ain Nouissy, and Mesra, experienced a notable 
DTW increase during 2010-2011 (Fig. 6. c), persisting into 
2014-2015, except for Mazagran and the periphery of Hassi 
Mamèche. These findings align with (Baiche et al., 2015), 
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indicating that the aquifer experienced a considerable increase 
in DTW near Mazagran, Ouréah, Ain Nouissy, Mesra, and 
the south of the plateau, which corroborates with the findings 
of this study

The variations of DTW mimic precipitation fluctuations 
and changes in their pattern. Giving that the Mediterranean 
region is considered a major climate change hotspot, the 
changing pattern of precipitation can be explained by the 
increased moisture divergence by the time-mean flow, due to 
anomalous anticyclonic circulation in the region (Seager et al., 
2014; Tuel.A & Eltahir.E.A.B, 2020).  While the alterations 
in precipitation patterns observed in the Mostaganem plateau 
region since 2010, may be influenced by various factors, the 
role of greenhouse gas emissions from the local ammonia 

Fig. 6 - Average annual precipitation 
for (a) 2000-2001, (b) 2005-2006, (c) 
2010-2011, and (d) 2014-2015.

Fig. 7 - Average annual precipitation 
for (a) 2000-2001, (b) 2005-2006, (c) 
2010-2011, and (d) 2014-2015.

Fig. 6 - Precipitazione media annua 
per (a) 2000-2001, (b) 2005-2006, (c) 
2010-2011, e (d) 2014-2015.

Fig. 7 - Soggiacenza media annua 
della falda per (a) 2000-2001, (b) 
2005-2006, (c) 2010-2011, e (d) 
2014-2015.

production industry has not been conclusively established as 
the primary driver of these changes. According to (Hennane 
et al., 2019), the production of ammonia resulted in 588 
tonnes of carbon dioxide in 2014 and 554 tonnes in 2015. 
Greenhouse gases affect precipitation patterns and intensity 
by altering cloud properties indirectly through atmospheric 
heating and changes in ice nuclei and cloud condensation 
nuclei (IPCC., 2022). Anthropogenic air pollution may also 
worsen water scarcity by suppressing rainfall processes, as 
suggested by (Maboa et al., 2022). These modifications include 
changes in size, location, and concentration of precipitations 
(Tang et al., 2018). The strong negative correlation between 
DTW and precipitation (R2 = 0.80 for all the periods) (Fig. 8) 
indicates that reduced precipitation leads to increased DTW. 
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Fig. 8 - Linear correlation of DTW and precipitation for 
(a) 2000-2001, (b) 2005-2006, (c) 2010-2011, and (d) 
2014-2015.

Fig. 8 - Correlazione lineare tra la soggiacenza della 
falda e la precipitazione per (a) 2000-2001, (b) 2005-
2006, (c) 2010-2011, e (d) 2014-2015.

Fig. 9 - Evolution of Licensed Wells in Mostaganem Plateau: Histogram and Trend 
(from Water resources department).

Fig. 9 - Evoluzione del numero di pozzi autorizzati nel Mostaganem Plateau: 
Istogramma e Trend (dal dipartimento delle risorse idriche).

This is because precipitation is the primary source of recharge 
for the aquifer, consistent with the findings of (Boukrentach 
et al., 2017). Consequently, natural recharge of the aquifer is 
reduced. 

Further, the anomaly of stacked values around 300mm 
can be observed in (Fig. 9). This anomaly may be caused 
by a recurring precipitation pattern, and is worsened by 
the interaction of excessive pumping with the effects of this 
precipitation pattern, leading to high DTW values. On the 
other hand, for low DTW values, values around 300mm can 
serve as the threshold at which water collection in lineaments 
is effective for infiltration.

The study reveals an increasing DTW in Mostaganem which 
can be attributed to a combination of factors. The exposed 
bedrock aquifer located on the northwestern outskirts of the 
city, renowned for its many springs and water sources exploited 
by the local community, is a significant factor influencing the 
hydrogeological processes in the region. With insufficient 
rainfall, the population heavily relies on groundwater, facing 
threats from illegal pumping wells and drought-induced 
aquifer challenges. In 2014, the Department of Hydraulics 
in Mostaganem’s wilaya documented 2,000 boreholes and 
wells on the plateau (Fig. 9), excluding clandestine wells, 
particularly in agricultural areas. The proliferation of 
electromechanical wells may contribute to DTW depletion. 
Drought on the plateau has led to the drying of boreholes, 
wells, and springs, compelling farmers to dig new wells and 
deepen existing ones.

Evaluating DTW, NDVI and LST dynamic:
The yearly minimum and maximum for each period of 

NDVI and LST are provided in (Tab. 3). 
Figure 10 and Figure 11 show, during 2000 to 2015, that 

NDVI indicates a slight increase, while LST displays a more 
pronounced rise during this period. The mean NDVI showed 
that the urban fabric has become denser and that the modest 
vegetation cover has increased slightly from 2000 to 2005 
(Fig.10 a & b). However, in 2010–2011, NDVI increased to 
0.32, to finally drop in 2014–2015, in the plateau’s southwest 
and southern borders. The weak vegetation has been replaced 
by barren lands and built-up areas (Fig. 9 d). Low NDVI 
values near Mostaganem city, Mazagran, Sayada, Oued El 
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Kheir, and Hassi Mamèche, suggest increased land expansion, 
contributing to decreased vegetation cover and rise of runoff. 
Changing natural environments into managed land use types 
results in elevated surface runoff due to decreased infiltration 
rates, ultimately leading to the depletion of groundwater 
resources. 

Given the region’s agricultural nature  (Baiche et al., 2015; 
Bellal et al., 2020), the NDVI increase in the central and 
eastern parts of Mostaganem Plateau from 2000 to 2015 may 
be attributed to the intensive use of previously abandoned 
agricultural land. (Boualem et al., 2015), reported that only 
5.4% of the plateau’s agricultural lands and crops are irrigated 
by surface water mobilized by dams, while 96.6% is irrigated 
by groundwater from wells, boreholes, and springs.

lSt (°c) nDVi

Min Mean Max Min Mean Max

2000-2001 21 26.05 31.11 0.026 0.113 0.27

2005-2006 21.96 26.61 31.26 0.029 0.156 0.29

2010-2011 23.13 27.29 31.46 0.032 0.176 0.32

2014-2015 25.7 29.43 33.17 0.01 0.150 0.29

Tab. 3 - Inter-annual comparison of LST and NDVI.

Tab. 3 - Confronto inter-annuale degli indicatori LST e NDVI.

LST accuracy was assessed with RMSE, comparing results 
with MODIS LST across the four periods (RMSE values: 
2.2°C, 2.1°C, 2.2°C, 2.5°C). These moderate values may stem 
from downscaling MODIS LST data to match with Landsat 
5 and Landsat 8 OLI resolutions and differing atmospheric 
correction methods: RTM for Landsat, split-window algorithm 
for MODIS (Li et al., 2023). 

The mean LST value increased by 3.38°C between 2000-
2015 (Tab. 3). LST shows a slight increase between 2000 and 
2011 in the maximum and minimum temperature; about 
2.13°C for the minimum and 0.35°C for the maximum. 
However, the minimum and maximum temperatures in 
2014-2015 were notably higher, with a 4.7°C and 2.7°C 
difference compared to 2000-2001, respectively. In 2000 
and 2005, the southern, southeastern, and some central 
northern areas of the study region had the highest LST values  
(Fig. 11 a & b). In 2000 and 2005, the northeast and central 
plateau regions, near Kheireddine and Sayada, had lower LST 
values. In the same periods, these regions had also low DTW. 
These results corroborates with those of (Malik et al., 2021), 
who found that regions with shallow groundwater display low 
LST values.

Coastal and southern areas have the lowest values. These 
areas are characterized by low NDVI values, indicating the 
presence of bare land and urban areas, and have lower LST 
values, contrary to what is indicated in the literature (Hussain 
& Karuppannan, 2023; Roy & Bari, 2022). This finding is 
surprising, given that urban and low-vegetation areas are 
frequently associated with high LST values in the literature. 
These results are in line with those of (Al-ruzouq et al., 
2022), who found that, in arid and semi-arid regions, the 
cooling influence of the wind and the Mediterranean breeze 
from the sea might explain this phenomenon. The LST of 
barren and urbanized land along the coast is low, and it rises 
as the distance from the coastline increases. Furthermore, 
DTW increased gradually and significantly from 2000 to 
2015, which contributed to the augmentation of LST values. 
Nevertheless, in this coastal area, the effect of high DTW 

Fig. 10 - Average annual NDVI for (a) 2000-2001, (b) 2005-2006, (c) 2010-2011, and (d) 2014-2015.

Fig. 10 - NDVI medio annuale per (a) 2000-2001, (b) 2005-2006, (c) 2010-2011, e (d) 2014-2015.
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Fig. 11 - Average annual LST for (a) 2000-2001, (b) 2005-2006, (c) 2010-2011, and (d) 2014-2015.

Fig. 11 - LST medio annuale per (a) 2000-2001, (b) 2005-2006, (c) 2010-2011, e (d) 2014-2015.

and barren land on LST values is dampened by the effect of 
cold winds.

From 2000 to 2015, LST values were highest in the south 
and south-eastern regions. Southern and southeast areas had 
consistently high LST values, while coastal areas saw a slight 
increase. In 2010–2011 and 2014–2015, the plateau’s southern, 
northcentral, and longitudinal axis linking northeastern to 
western areas had higher mean temperatures (Fig. 11 c & 
d). Alterations in crop types and land conversion to urban 
areas may contribute to an increase in LST. The agricultural 
practices prevalent in Mostaganem plateau involve the 
cultivation of vegetable crops, fruits, corn, and whole-grain 
cereals. These activities have been observed to contribute to 
elevated levels of land surface temperature (Medina-Fernández 
et al., 2023). The rise in LST may increase evaporation in 
shallow groundwater areas, depleting it (Condon et al., 2020).

The correlation coefficient (R2) of DTW/ NDVI and DTW/
LST are (0.6632, 0.6074, 0.3110, and 0.2024) (Fig. 12) and 
(0.7138, 0.7817, 0.7779 and 0.7718) (Fig. 13), respectively. 
The DTW/NDVI relationship is strongly negative for 2000 
and 2005, the years with the lowest NDVI. This suggests 
that vegetation rely on groundwater supplies (Robinson et al., 
2008). These findings align with similar studies by (Jin et 
al., 2019; Song et al., 2021), which also observed a negative 
correlation between NDVI and DTW in unconfined aquifers 
in semi-arid climates. However, as the low R2 indicates a 

marginal relationship between NDVI and DTW in 2010 and 
2014. As mentioned earlier, the croplands on Mostaganem 
Plateau depend on extracted groundwater for irrigation, 
which is currently the only water source in arid and semi-
arid regions (Fayech & Tarhouni, 2021). This dependence on 
pumped groundwater is a key factor shaping local vegetation 
and soil conditions. Additionally, areas with high DTW (a 
consequence of excessive pumping) have deep vadose zone 
compared toregion with low DTW. This difference in DTW 
directly impacts soil moisture content, with the high DTW 
areas experiencing lower soil moisture levels (Hamzeh et 
al., 2018). In the high DTW areas, vegetation is primarily 
nourished by the extracted groundwater used for irrigation, 
rather than relying on limited soil moisture. This can impact 
the soil thermal properties and LST (Malik et al., 2021).

The conversion of native vegetation to rangelands in semi-
arid regions tends to reduce groundwater recharge. This is 
because grazing animals compact the topsoil, reducing 
water pore volume and saturated soil hydraulic conductivity, 
which in turn destroys macropores (Owuor et al., 2016). 
Evapotranspiration (ETP) also has an impact on the correlation 
between DTW and LST. Higher ETP depletes groundwater, 
leading to elevated LST (Condon et al., 2020).

Further, the anomaly of stacked values for more than 30°C 
for 2000 and 2005, and less than 30°C for 2010 and 2014, can 
be noticed from (Fig. 13). For values greater than 30°C, this 
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Fig. 13 - Linear correlation of DTW and LST 
for (a) 2000-2001, (b) 2005-2006, (c) 2010-
2011, and (d) 2014-2015.

Fig. 13 - Correlazione lineare tra la 
soggiacenza della falda e LST per (a) 2000-
2001, (b) 2005-2006, (c) 2010-2011, e  
(d) 2014-2015.

Fig. 12 - Linear correlation of DTW and 
NDVI for (a) 2000-2001, (b) 2005-2006,  
(c) 2010-2011, and (d) 2014-2015.

Fig. 12 - Correlazione lineare tra la 
soggiacenza della falda e NDVI per (a) 2000-
2001, (b) 2005-2006, (c) 2010-2011, e  
(d) 2014-2015.
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anomaly can be caused by the presence of sparse herbaceous 
crops, that have hight LST values, as evidenced by the low 
NDVI in 2000 and 2005. Conversely, for values lower than 
30°C, it can be caused by a change in cultivated vegetation, 
and shifted from sparse to denser vegetation, as evidenced 
by the NDVI of 2010 and 2014. Additionally, for every year 
under investigation, the stacked values indicate high DTW 
because of over-pumping for agricultural purposes.

MLR analysis: ranking DTW’s influential factors
The results in (Tab. 4) reveal the statistical significance 

of the relationship between DTW, precipitation, NDVI 
and LST. The MLR results show that precipitation is the 
main influencing factor of DTW fluctuations through all 
the studied periods, with a p-Value less than 0.001. This 
significant relationship between DTW and precipitation 
reaffirms the claim of Mostaganem Plateau aquifer’s sensitivity 
to precipitation variation.

For 2000, 2005, 2010, and 2014, the multiple linear 
regression is significant with multiple R2 of 0.85, 0.90, 0.91, 
and 0.87 and adjusted R2 of 0.74, 0.82, 0.84, and 0.77. LST 
and NDVI have insignificant regression coefficients with 
DTW because their p-Values are far greater than 0.05. The 
delay between precipitation events and the corresponding 
groundwater recharge in the aquifer system may play a 
role in this relationship, but it is not the sole explanation. 
It also could be attributed to the correlation between the 
independent variables, and there is frequently no single rule 
for determining the “significance” threshold (Senn et al., 
2016), as the p-value is frequently a function of sample size 
and variance. 

Variance inflation factor (VIF) diagnostics were used to 
check for significant multicollinearity in the MLR model. 
VIF results are all satisfactory and less than 5. Even though 

Period Variable Estimate t-Value p-Value Vif

2000

Precipitation 1.2397 23.5181 1.2447.10-60 1.1125

NDVI -0.0649 -0.0207 0.9835 1.0049

LST 0.0027 1.7352 0.0841 3.9549

2005

Precipitation 0.0354 29.4695 5.2794.10-75 4.9351

NDVI -0.9532 -0.3359 0.7372 1.0532

LST 0.1232 1.5497 0.1227 1.0164

2010

Precipitation 0.0460 32.4132 2.0842.10-82 4.9862

NDVI 0.0805 0.5249 0.6001 2.6657

LST -0.8386 -0.1760 0.8605 2.7013

2014

Precipitation 0.0280 26.4245 1.0421.10-68 4.3367

NDVI 0.0766 0.0434 0.9654 1.0009

LST 0.0349 0.6777 0.4987 1.0058

Tab. 4 - Output of the linear regression model, in which DTW was the dependent 
variable and precipitation, NDVI and LST were the independent variable.

Tab. 4 - Risultati del modello di regressione lineare, in cui DTW (soggiacenza 
della falda) era la variabile dipendente e la precipitazione, NDVI e LST erano 
le variabili indipendenti.

NDVI/LST correlates, it is not severe enough to require 
corrective action. The interaction between DTW, LST, and 
NDVI pertains to evaporation, water soil reserves, and the 
physical characteristics of the vegetation and soil. High 
temperature and atmospheric demands increase evaporation 
and vegetation activity, decreasing soil water reserves. (Zeng 
et al., 2018) affirmed that in arid and semi-arid regions such 
as the Mediterranean coast, the pattern of evaporation differs 
from the vegetation greening pattern which is precipitation-
induced. These regions intensify the water cycle by increasing 
evaporation, which decreases soil moisture, increases DTW, 
and groundwater extraction for crop irrigation. LST creates 
soil crust, connecting LST and DTW implicitly. In fact, 
high LST can cause the formation of physical soil crust, 
which can reduce soil moisture, soil porosity, and infiltration 
rate, and increase runoff, ultimately affecting groundwater 
replenishment (Belnap, 2006)

Concerning the anthropogenic effect on groundwater 
drought detection using NDVI and LST

The use of NDVI/LST for drought detection is built on 
the assumption of the complementarity of the information in 
their wave bands to provide a more robust characterization 
for different phenomena at the land surface (Karnieli et al., 
2010). NDVI is negatively correlated with LST, strongly 
positively correlated with precipitation, and strongly 
negatively correlated with DTW, since droughts are more 
common at low latitudes (Karnieli et al., 2010). Although 
the study area meets the requirements for using the NDVI 
and LST to identify drought, the latter has undergone human 
influence. The performance of the NDVI and LST indices in 
2010 and 2015 was adversely affected by the dependence of 
agricultural regions on pumped water as a result of surface 
water scarcity. The relationship between DTW, NDVI, and 
LST is indirect and primarily affected by human activities. 
The rise in NDVI in our case indicates heavy groundwater 
use, not availability. In areas with limited human activity, 
DTW strongly affects NDVI and LST. Anthropologic effects 
from intensive agriculture and groundwater overexploitation 
dampen drought detection indices like NDVI and LST. 
Climate change and anthropogenic disturbances have been 
shown to be responsible for temporal and spatial variation in 
evaporation. 

Effective groundwater management in this region should 
include strategies for improved monitoring of groundwater 
levels and usage, intensified regulatory mechanisms to prevent 
over-extraction, and encouraging sustainable agricultural 
practices such as drought-resistant crops (Hoogesteger, 2022). 
Artificial recharge structures and enhancing public awareness 
on groundwater conservation will further help in sustainable 
management of the groundwater resources (Mseli et al., 2023).

Conclusion
This study aims to evaluate climate change effects on 

Mostaganem plateau alluvial aquifer through the relationships 
of DTW with precipitation, NDVI and LST, using an adaptive 
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