See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Influence of the range of data on the performance of ANN- and SVM- based time series models for reproducing groundwater level observations
In the present study, we designed time series models for predicting groundwater level fluctuations using an artificial neural network (ANN) and a support vector machine (SVM). To estimate the model sensitivity to the range of data set for the model building, numerical tests were conducted using hourly measured groundwater level data at a coastal aquifer of Jeju Island in South Korea. The model performance of the two models is similar and acceptable when the range of input variable lies within the data set for the model building. However, when the range of input variables is beyond it, both the models showed abnormal prediction results: an oscillation for the ANN model and a constant value for SVM. The result of the numerical tests indicates that it is necessary to obtain various types of input and output variables and assign them to the model building process for the success of design time series models of groundwater level prediction.
Downloads
Supporting Agencies
This research was supported by the Basic Research Project(19-3411) of the Korea Institute of Geoscience and Mineral Resources and ‘Development of drought overcoming technology based on Well Network System’ Project funded by Ministry of Environment, Republic of Korea.How to Cite
PAGEPress has chosen to apply the Creative Commons Attribution NonCommercial 4.0 International License (CC BY-NC 4.0) to all manuscripts to be published.