Investigating the feasibility of using precipitation measurements from weather RaDAR to estimate potential recharge in regional aquifers: the Majella massif case study in Central Italy
Accepted: 26 September 2022
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Rain gauge spatial sparsity and temporal discontinuity of data represent one of the major issues for reliable recharge estimations. In the past decades, the use of ground-based microwave weather RaDAR has dramatically improved quantitative rainfall estimation by providing spatially continuous estimates of rainfall over an area of more than 400 km2 every 10 minutes. Furthermore, weather RaDAR data have also proved relatively reliable in mountainous areas. These paramount features of RaDAR-derived precipitation data could improve the estimation of potential recharge of aquifers, which rely on geospatializations (e.g., Thiessen polygons) of rainfall data collected by a sparse rain gauge network which often shows lacking at high altitude (i.e., recharge areas), introducing additional uncertainty in the inflow volumes. Weather RaDAR rainfall estimation is also affected by various sources of error, which can be reduced by proper post-processing; however, uncertainties remain, especially for surface rain rate estimations. Despite the currently necessary complex numerical processing, the purpose of the study is to evaluate the use of the weather RaDAR data as an alternative or in addition to meteorological data. Based on the above considerations, the feasibility of using RaDAR-based precipitation data to estimate aquifer potential recharge and calculate a detailed water budget in the areas characterized by high elevations, such as the Majella massif in the central Apennines, has been evaluated. To address this objective, the water budget has been calculated in the 2017-2018 period using both RaDAR-based precipitation data and rain gauge data, as well as adopting different methods (i.e., Turc and Thornthwaite). Although intrinsically uncertain, the RaDAR-based precipitation data provided solid results, pointed out by comparing it with water budget obtained by rain gauge data, and especially with experimental literature data. This interdisciplinary work may pave the way for continuous monitoring of aquifer potential recharge at extremely high temporal and spatial resolution.
Andreo B., Vías J., Durán J.J., Jiménez P., López-Geta J.A., Carrasco F. (2008) Methodology for groundwater recharge assessment in carbonate aquifers: application to pilot sites in southern Spain. Hydrogeology Journal. doi:10.1007/s10040-008-0274-5
Barbieri S., Di Fabio S., Lidori R., Rossi F.L., Marzano F.S., Picciotti E. (2022) Mosaicking Weather Radar retrievals from an Operational Heterogeneous Network at C and X Band for Precipitation Monitoring in Italian Central Apennines. Remote Sens. doi:10.3390/rs14020248
Boni C., Bono P., Capelli G. (1986) Schema idrogeologico dell’Italia Centrale. “Hydrogeological scheme of Central Italy”. Mem. Soc. Geol. It., 35 (2), 991-1012.
Celico P. (1983) Idrogeologia dell’Italia centro meridionale “Hydrogeology of south-central Italy” Quad. Cassa Mezzog. 4, 1-225
Chiaudani A., Di Curzio D., Palmucci W., Pasculli A., Polemio M., Rusi S. (2017) Statistical and Fractal Approaches on Long Time-Series to Surface-Water/Groundwater Relationship Assessment: A Central Italy Alluvial Plain Case Study, Water. doi:10.3390/w9110850
Chiaudani A., Di Curzio D., Rusi S. (2019) The snow and rainfall impact on the Verde spring behavior: A statistical approach on hydrodynamic and hydrochemical daily time-series. Science of The Total Environment. doi:10.1016/j.scitotenv.2019.06.433
Chilès J.-P., Delfiner P. (2012). Geostatistics: Modeling Spatial Uncertainty. 2nd ed. Wiley, Hoboken, NJ, USA.
Di Curzio D., Rusi S., Di Giovanni A., Ferretti E. (2021) Evaluation of Groundwater Resources in Minor Plio-Pleistocene Arenaceous Aquifers in Central Italy. Hydrology. doi:10.3390/hydrology8030121
Di Curzio D., Rusi S., Signanini P. (2019) Advanced redox zonation of the San Pedro Sula alluvial aquifer (Honduras) using data fusion and multivariate geostatistics. Science of The Total Environment. doi:10.1016/j.scitotenv.2019.133796
Falconi M.T. and F.S. Marzano (2019) Weather RaDAR Data Processing and Atmospheric Applications: An overview of tools for monitoring clouds and detecting wind shear. IEEE Signal Processing Magazine. doi:10.1109/MSP.2019.2890934
Fiorillo F., Petitta M., Preziosi E., Tallini M. (2015) Long-term trend and fluctuations of karst spring discharge in a Mediterranean area (central-southern Italy). Environmental Earth Sciences. doi:10.1007/s12665-014-3946-6
Fronzi D., Di Curzio D., Rusi S., Valigi D., Tazioli A. (2020) Comparison between Periodic Tracer Tests and Time-Series Analysis to Assess Mid-and Long-Term Recharge Model Changes Due to Multiple Strong Seismic Events in Carbonate Aquifers. Water. doi:10.3390/w12113073
Lorenzi V., Sbarbati C., Banzato F., Lacchini A., Petitta M. (2022) Recharge assessment of the Gran Sasso aquifer (Central Italy): Time-variable infiltration and influence of snow cover extension. Journal of Hydrology: Regional Studies. doi:10.1016/j.ejrh.2022.101090
McKee J. L., Binns A. D. (2016) A review of gauge–radar merging methods for quantitative precipitation estimation in hydrology, Canadian Water Resources Journal / Revue canadienne des ressources hydriques. doi:10.1080/07011784.2015.1064786
Montopoli M., E. Picciotti, L. Baldini, S. Di Fabio, F.S. Marzano, G. Vulpiani (2021) Gazing inside a giant-hail-bearing Mediterranean supercell by dual-polarization Doppler weather RaDAR. Atmospheric Research. doi:10.1016/j.atmosres.2021.105852.
Nanni T., Rusi S. (2003) Idrogeologia del massiccio carbonatico della montagna della Majella (Appennino centrale) “Hydrogeology of Majella Mountain carbonatic massif (Central Appennines)” Boll. Soc. Geol. It., 122 (2003), 173-202, 27 ff., 9 tabb., 2 tavv. f.t.
Navarro A., García-Ortega E., Merino A., Sánchez J. L., Tapiador F. J. (2020). Orographic biases in IMERG precipitation estimates in the Ebro River basin (Spain): The effects of rain gauge density and altitude. Atmospheric Research. doi:10.1016/j.atmosres.2020.105068
Petitta M., Scarascia Mugnozza G., Barbieri M., Bianchi Fasani G., & Esposito C. (2010) Hydrodynamic and isotopic investigations for evaluating the mechanisms and amount of groundwater seepage through a rockslide dam. Hydrological Processes. doi:10.1002/hyp.7773
Thiessen A.H. (1911) Precipitation average for large areas. Monthly weather rev.
Thornthwaite, C.W., Mather, J.R. (1957) Instruction and Tables for computing potential evapotraspiration and water balance. Public. Climatology, 10, 185-311.
Tondi E., Antonellini M., Aydin A., Marchegiani L., Cello G. (2006) The role of deformation bands, stylolites and sheared stylolites in fault development in carbonate grainstones of Majella Mountain, Italy. Journal of Structural Geology. doi:10.1016/j.jsg.2005.12.001.
Turc, L. (1954) Le bilan d’eau des sols: relation entre les précipitations, l’évaporation et l’écoulement. “Soil water budget: relationship between rainfall, evaporation and outflow”. La Houille blanche, 3 journèes de l’hydraulique de la Societè Hydrotecnique de France, Paris, 36-44.
Vessia G., Di Curzio D., Castrignanò A. (2020b) Modeling 3D soil lithotypes variability through geostatistical data fusion of CPT parameters. Science of the otal Environment. doi:10.1016/j.scitotenv.2019.134340
Viaroli S., Di Curzio D., Lepore D., Mazza R. (2019) Multiparameter daily time-series analysis to groundwater recharge assessment in a caldera aquifer: Roccamonfina Volcano, Italy. Science of the Total Environment. doi:10.1016/j.scitotenv.2019.04.327
Viaroli S., Mastrorillo L., Lotti F., Paolucci V., Mazza R. (2018) The groundwater budget: a tool for preliminary estimation of the hydraulic connection between neighboring aquifers. Journal of hydrology. doi:10.1016/j.jhydrol.2017.10.066
Vulpiani G., Montopoli M., Delli Passeri L., Gioia A. G., Giordano P., Marzano F.S. (2012) On the use of dual-polarized C-band RaDAR for operational rainfall retrieval in mountainous areas, J. Appl. Meteor. Climat. doi:10.1175/JAMC-D-10-05024.1.
Wackernagel H. (2003) Multivariate Geostatistics: An Introduction with Applications. Springer-Verlag, Berlin.
World Meteorological Organization (WMO) (2008). Chapter 3: Precipitation measurement. In: C. Collier ed.. Guide to hydrological practices, Volume 1: Hydrology – From measurement to hydrological information, 1.3-1–1.3-30.
Copyright (c) 2022 the Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
PAGEPress has chosen to apply the Creative Commons Attribution NonCommercial 4.0 International License (CC BY-NC 4.0) to all manuscripts to be published.