The survey of Italian springs by the National Hydrographic Service, a forgotten database. Structuring and analysis of a dataset of Campania springs (southern Italy)


Submitted: 30 April 2022
Accepted: 21 June 2022
Published: 28 June 2022
Abstract Views: 735
PDF: 427
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

The analysis of groundwater resources is a particularly significant aspect of the economic, social and environmental development of the national territory. This is particularly relevant for the Campania region which, although characterized by the most significant aquifer systems of southern Italy, suffers from critical issues related to the progressive increase in demand and climatic variability at different time scales. In this framework, the lack of data concerning the survey of springs, including the minor ones, and of historical discharge measurements represents the main limitation to a more comprehensive regional hydrogeological characterization. The only source of historical data regarding the systematic and comprehensive survey of springs and discharge measurement is the Publication No. 14 of the National Hydrographic Service of the Ministry of Public Works “The Italian springs. List and description” reporting measures made between the 1920s and 1940s which was published in distinct volumes for each compartment. Despite its potential relevance, this source has so far been little used in regional hydrogeological studies. In this paper, a comparative analysis among data of springs derived from the Publication No. 14 and from measurement campaigns made by the Cassa per il Mezzogiorno (Special Project 26), between the 1960s and 1980s for main springs, was carried out for the Campania region. The information available from each source was validated through a cross-check, by means of a comparison of coordinates and a statistical analysis of the characterizing parameters. The new dataset allowed to expand the hydrogeological regional characterization with a higher number of springs, including the minor ones. The results obtained recognize the Publication No. 14 of the National Hydrographic Service as an important source of data to not be overlooked, especially in a condition of historical data shortage, by which can be both carried out regional hydrogeological and temporal analyses as well as identified integrative groundwater resources.


Allocca V, Celico F, Celico P, De Vita P, Fabbrocino S, Mattia S, Monacelli G, Musilli I, Piscopo V, Scalise A R, Summa G, Tranfaglia G (2007) Illustrative Notes of the Hydrogeological Map of Southern Italy. Istituto Poligrafico e Zecca dello Stato, ISBN 88-448-0215-5, 1-211

Allocca V, Manna F, De Vita P (2014) Estimating annual groundwater recharge coefficient for karst aquifers of the southern Apennines (Italy). Hydrology and Earth System Sciences, 18, 803–817. doi:10.5194/hess-18-8032014. DOI: https://doi.org/10.5194/hess-18-803-2014

Allocca V, Coda S, Calcaterra D, De Vita P (2021) Groundwater rebound and flooding in the Naples’ periurban area (Italy). Journal of Flood Risk Management, e12775. DOI: https://doi.org/10.1111/jfr3.12775

Angelini P, Dragoni W (1997) The problem of modeling limestone springs: the case of Bagnara (North Apennines, Italy). Groundwater, 35(4), 612-618. DOI: https://doi.org/10.1111/j.1745-6584.1997.tb00126.x

Bauer H, Schröckenfuchs TC, Decker K (2016) Hydrogeological properties of fault zones in a karstified carbonate aquifer (Northern Calcareous Alps, Austria). Hydrogeology Journal, 24(5), 1147-1170. DOI: https://doi.org/10.1007/s10040-016-1388-9

Braca G, Bussettini M, Ducci D, Lastoria B, Mariani S (2019) Evaluation of national and regional groundwater resources under climate change scenarios using a GIS-based water budget procedure. Rendiconti Lincei. Scienze Fisiche e Naturali, 30(1), 109-123. DOI: https://doi.org/10.1007/s12210-018-00757-6

Bundschuh J (1993) Modeling annual variations of spring and groundwater temperatures associated with shallow aquifer systems. J. Hydrol. 142, 427–444. DOI: https://doi.org/10.1016/0022-1694(93)90022-2

Bureau of Reclamation U.S. Department of Interior (1985) Ground water manual. Denver, CO: U.S. Government Printing Office.

Celico P (1983) Idrogeologia dei massicci carbonatici, delle piane quaternarie e delle aree vulcaniche dell’Italia centromeridionale (Marche e Lazio meridionale, Abruzzo, Molise e Campania). “Hydrogeology of carbonate massifs, Quaternary plains and volcanic areas of central-southern Italy (Marche and southern Lazio, Abruzzo, Molise and Campania)”. Quaderni della Cassa per il Mezzogiorno, 4/2, 1–203.

Celico P, Dall’Aglio M, Ghiara MR, Stanzione D, Brondi M, Prosperi M (1992) Geochemical monitoring of the thermal fluids in the Phlegraean Fields from 1970 to 1990. Boll. Soc. Geol. Ital. 111, 409-422.

Celico P, Stanzione D, Esposito L, Ghiara MR, Piscopo V, Caliro S, La Gioia P (1998) Caratterizzazione idrogeologica e idrogeochimica dell’area vesuviana. “Hydrogeological and hydrogeochemical characterization of the Vesuvian area”. Boll. Soc. Geol. It., 117, 3-20.

Civita M (1975) Idrogeologia. “Hydrogeology”. In: Ippolito F, Nicotera P, Lucini P, Civita M, de Riso R. (Eds.), Geologia Tecnica [Applied Geology]. ISEDI: 179-231.

Coda S, Tessitore S, Di Martire D, Calcaterra D, De Vita P, Allocca V (2019) Coupled ground uplift and groundwater rebound in the metropolitan city of Naples (southern Italy). Journal of Hydrology, 569, 470-482. DOI: https://doi.org/10.1016/j.jhydrol.2018.11.074

Cusano D, Allocca V, Fusco F, Tufano R, De Vita (2019) Multi-scale assessment of groundwater vulnerability to pollution: study cases from Campania region (southern Italy). Italian Journal of Engineering Geology and Enviroment (Special Issue) doi:10.4408/IJEGE.2019-01.S-03.

De Vita P, Allocca V, Manna F, Fabbrocino S (2012) Coupled decadal variability of the North Atlantic Oscillation, regional rainfall and karst spring discharges in the Campania region (southern Italy). Hydrology and Earth System Sciences, 16(5), 1389. doi:10.5194/hessd-8-11233-2011. DOI: https://doi.org/10.5194/hess-16-1389-2012

De Vita P, Allocca V, Celico F, Fabbrocino S, Mattia C, Monacelli G, Musilli I, Piscopo V, Scalise AR, Summa G, Tranfaglia G, Celico P (2018) Hydrogeology of continental southern Italy. Journal of Maps, 14(2), 230-241. doi:10.1080/17445647.2018.1454352. DOI: https://doi.org/10.1080/17445647.2018.1454352

Ducci D, Tranfaglia G (2008) Effects of climate change on groundwater resources in Campania (southern Italy). Geological Society, London, Special Publications, 288(1), 25-38. DOI: https://doi.org/10.1144/SP288.3

Drogue C (1971) Coefficient d’infiltration ou infiltration efficace, sur les roches calcaires. Actes colloque d’hydrologie en pays calcaire, Besançon “Infiltration coefficient or effective infiltration on limestone rocks“. Actes colloque d’hydrologie en pays calcaire, Besançon”, 121-131.

Ford DC, Williams PW (1989) Karst geomorphology and hydrology (Vol. 601). London: Unwin Hyman. DOI: https://doi.org/10.1007/978-94-011-7778-8

Freeze RA, Cherry J A (1979) Groundwater. Englewood Cliffs, NJ: Prentice Hall. p. 604.

Fusco F, Allocca V, Coda S, Cusano D, Tufano R, De Vita P (2020) Quantitative Assessment of Specific Vulnerability to Nitrate Pollution of Shallow Alluvial Aquifers by Process-Based and Empirical Approaches. Water, 12(1), 269. doi:10.3390/w12010269. DOI: https://doi.org/10.3390/w12010269

Geiger R (1954) Klassifikation der klimate nach W. Köppen. “Classification of climates according to W. Köppen“. Landolt-Börnstein–Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, 3, 603-607.

Green TR, Taniguchi M, Kooi H, Gurdak JJ, Allen DM, Hiscock K M, ... and Aureli A (2011) Beneath the surface of global change: Impacts of climate change on groundwater. Journal of Hydrology, 405(3-4), 532-560. DOI: https://doi.org/10.1016/j.jhydrol.2011.05.002

Kiraly L (1975) Rapport sur l’état actuel des connaissances dans le domaines des caractères physiques des roches karstiques. “Report on the current state of knowledge in the field of the physical characteristics of karstic rocks”. Burger A. and Dubertret L. (Eds), Hydrogeology of karstic terrains, Int. Union of Geol. Sciences, B, 3, 53-67.

Istituto Geografico Militare Italiano (I.G.M.I.) (1996) Topographic maps 1:25.000 scale – Series 25V (UTM WGS84). I.G.M.I. Florence, Italy.

Leonardi V, Arthaud F, Grillot JC, Avetissian V, Bochnaghian P (1996) Modelling of a fractured basaltic aquifer with respect to geological setting, and climatic and hydraulic conditions: the case of perched basalts at Garni (Armenia). J. Hydrol. 179, 87–109.

Mangin A (1974) Contribution à l’étude hydrodynamique des aquifères karstiques. “Contribution to the hydrodynamic study of karstic aquifers”. Thèse Univ. Dijon. Annales de spéléologie, 29/3: 283-332, 29/4:495-601, 30/1: 21-124.

Manna F, Allocca V, De Vita P, Fusco F and Napolitano E (2013) Groundwater recharge assessment in karst aquifers of southern Apennines (Italy). Rend. Online Soc. Geol. It., 24, 202- 204.

Manga M (1999) On the timescales characterizing groundwater discharge at springs. Journal of Hydrology, 219(1-2), 56-69. DOI: https://doi.org/10.1016/S0022-1694(99)00044-X

Mastrocicco M, Busico G, Colombani N (2019) Deciphering interannual temperature variations in springs of the Campania region (Italy). Water, 11(2), 288. DOI: https://doi.org/10.3390/w11020288

Maxey GB (1964) Hydrostratigraphic units. Journal of Hydrology, 2, 124–129. doi: 10.1016/0022-1694(64)90023-X. DOI: https://doi.org/10.1016/0022-1694(64)90023-X

Meinzer OE (1923) The occurrence of groundwater in the United States, with a discussion of principles. U.S. Geological Survey Water-Supply Paper, 489, p. 321.

Petrella E, Aquino D, Fiorillo F, Celico F (2015) The effect of lowpermeability fault zones on groundwater flow in a compartmentalized system. Experimental evidence from a carbonate aquifer (Southern Italy). Hydrological Processes, 29(6), 1577-1587. DOI: https://doi.org/10.1002/hyp.10294

Scanlon BR, Mace RE, Barrett ME, Smith B (2003) Can we simulate regional groundwater flow in a karst system using equivalent porous media models? Case study, Barton Springs Edwards aquifer, USA. Journal of hydrology, 276(1-4), 137-158. DOI: https://doi.org/10.1016/S0022-1694(03)00064-7

Servizio Idrografico. Consiglio Nazionale dei Lavori Pubblici (1942) Le sorgenti italiane. Elenco e descrizione. Campania. Sezione idrografica di Napoli. Pubblicazione N. 14, Vol. VII. “The Italian springs. List and description. Campania. Hydrographic section of Naples. Pubblication No.14, Vol. VII”. Roma, Istituto Poligrafico dello Stato Libreria.

Tufano R, Allocca V, Coda S, Cusano D, Fusco F, Nicodemo F, Pizzolante A, De Vita P (2020) Groundwater vulnerability of principal aquifers of Campania region (southern Italy). Journal of Maps, 2020.16(2):565-576. doi:10.1080/17445647.2020.1787887. DOI: https://doi.org/10.1080/17445647.2020.1787887

United Nations Educational, Scientific and Cultural Organization (UNESCO), World Meteorological Organization (WMO) (1977) Preparation of ground-water maps, in Hydrological maps. Louvain, International Association of Hydrological Sciences. Studies and Reports in Hydrology, 20, 135–192.

Vitale S, Ciarcia S (2018) Tectono-stratigraphic setting of the Campania region (southern Italy). Journal of Maps, 14(2), 9-21. doi:10.1080/17445647.2018.142. DOI: https://doi.org/10.1080/17445647.2018.1424655

Cusano, D., Allocca, V., Coda, S., Lepore, D., Vassallo, M., & De Vita, P. (2022). The survey of Italian springs by the National Hydrographic Service, a forgotten database. Structuring and analysis of a dataset of Campania springs (southern Italy). Acque Sotterranee - Italian Journal of Groundwater, 11(2), 31–41. https://doi.org/10.7343/as-2022-571

Downloads

Download data is not yet available.

Citations