Assessment of Metalaxyl migration through vadose zone of alluvial sandy soil using column experiment and HYDRUS numerical modeling
Accepted: 3 May 2023
Supplementary Material: 104
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Contemporary research on pesticides/fungicides as potential sources of groundwater contamination, including their migration pathways, especially in the Western Bengal basin (WBB), is scarce. The present research intends to study the vulnerability of groundwater towards pollution from metalaxyl. Metalaxyl is a fungicide added anthropogenically to the sandy soil of WBB for the cultivation of crops like tomatoes, potatoes and mustard. The study explores the mechanics of metalaxyl adsorption in soil and its migration to the associated groundwater system. Chemical analyses show high concentrations of metalaxyl within groundwater (472.9 μg/L, maximum amount) from the study area (Nadia district of WBB). The groundwater ubiquity score of metalaxyl (4.6) depicts that it is very much prone to leach through the sandy soils of WBB to the underlying groundwater system. The results of column leaching experiments and their congruence to the findings of numerical modelling study using HYDRUS software confirm the fact. The adsorptive resilience of the studied soils towards metalaxyl is insignificant (soils of North Chandmari (S1) =0.1087 mg/g, Ghoragacha (S2) =0.21 mg/g, and Khaldarpara (S3) =1.771 mg/g). However, the presence of excess iron concentration may enhance the adsorptive capacity of the soil toward Metalaxyl, thereby limiting its migration toward the zone of saturation.
Abhilash, P. C., & Singh, N. (2009). Pesticide use and application: an Indian scenario. Journal of hazardous materials, 165(1-3), 1-12. https://doi.org/10.1016/j.jhazmat.2008.10.061 DOI: https://doi.org/10.1016/j.jhazmat.2008.10.061
Abhisek, S. (2018). Chemical pesticides in vegetable farming hampers health of farmers and biodiversity canvas of the region. International Journal for Research in Applied Science and Engineering Technology, 6(1), 2697-2705. DOI: https://doi.org/10.22214/ijraset.2018.1370
Adhikary, A., Konar, P., Chakraborty, T., Pal, S., & Ghosh, S. (2022). Efficacy Assessment of Silty–Sandy Soil as Bed Material in Constructed Wetland to Treat Naphthalene-Laden Wastewater: Physical and Numerical Modeling. Journal of Hazardous, Toxic, and Radioactive Waste, 26(2), 04021064. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000670 DOI: https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000670
Ahmed, A., & Deb, S. (2012). Land use/land cover change dynamics of a district with one of the highest population growth rate in India: A geo-spatial approach. Intl J Agric Env Biotech, 5(3), 271-280.
Alagh, Y. K. (1988). Pesticides in Indian agriculture. Economic and political weekly, 1959-1964.
El Alfy, M., & Faraj, T. (2017). Spatial distribution and health risk assessment for groundwater contamination from intensive pesticide use in arid areas. Environmental geochemistry and health, 39(1), 231-253. https://doi.org/10.1007/S10653-016-9825-1 DOI: https://doi.org/10.1007/s10653-016-9825-1
Anand, K., Singh, O., & Singh, R. C. (2014). Different strategies for the synthesis of graphene/ZnO composite and its photocatalytic properties. Applied Physics A, 116(3), 1141-1148. https://doi.org/10.1007/S00339-013-8198-X DOI: https://doi.org/10.1007/s00339-013-8198-x
Awual, M. R., & Hasan, M. M. (2019). A ligand based innovative composite material for selective lead (II) capturing from wastewater. Journal of Molecular Liquids, 294, 111679. https://doi.org/10.1016/j.molliq.2019.111679 DOI: https://doi.org/10.1016/j.molliq.2019.111679
Banerjee, I., Tripathi, S. K., Roy, A. S., & Sengupta, P. (2014). Pesticide use pattern among farmers in a rural district of West Bengal, India. Journal of natural science, biology, and medicine, 5(2), 313. https://doi.org/10.4103%2F0976-9668.136173 DOI: https://doi.org/10.4103/0976-9668.136173
Besser, H., Dhaouadi, L., & Hamed, Y. (2022). Groundwater quality evolution in the agro-based areas of southern Tunisia: environmental risks of emerging farming practices. Euro-Mediterranean Journal for Environmental Integration, 7(1), 65-78. https://doi.org/10.1007/S41207-021-00289-W DOI: https://doi.org/10.1007/s41207-021-00289-w
BIS (1985). “Indian Standard Methods of Test for Soils (Is: 2720)”. Bureau of Indian Standards, New Delhi.
Biswas, A. Modelling and Prediction of Rainfall by ANN Technique in Krishnanagar, Nadia, West Bengal, India.
Bonassi, S., Znaor, A., Ceppi, M., Lando, C., Chang, W. P., Holland, N., ... & Fenech, M. (2007). An increased micronucleus frequency in peripheral blood lymphocytes predicts the risk of cancer in humans. Carcinogenesis, 28(3), 625-631. https://doi.org/10.1093/carcin/bgl177 DOI: https://doi.org/10.1093/carcin/bgl177
Chatterjee, S., Mondal, S., & De, S. (2018). Design and scaling up of fixed bed adsorption columns for lead removal by treated laterite. Journal of Cleaner Production, 177, 760-774. https://doi.org/10.1016/j.jclepro.2017.12.249 DOI: https://doi.org/10.1016/j.jclepro.2017.12.249
Duttagupta, S., Mukherjee, A., Das, K., Dutta, A., Bhattacharya, A., & Bhattacharya, J. (2020). Groundwater vulnerability to pesticide pollution assessment in the alluvial aquifer of Western Bengal basin, India using overlay and index method. Geochemistry, 80(4), 125601. https://doi.org/10.1016/J.CHEMER.2020.125601 DOI: https://doi.org/10.1016/j.chemer.2020.125601
García-Calzón, J. A., & Díaz-García, M. E. (2007). Characterization of binding sites in molecularly imprinted polymers. Sensors and Actuators B: Chemical, 123(2), 1180-1194. https://doi.org/10.1016/J.SNB.2006.10.068 DOI: https://doi.org/10.1016/j.snb.2006.10.068
Gelhar, L. W. (1986). Stochastic subsurface hydrology from theory to applications. Water Resources Research, 22(9S), 135S-145S. https://doi.org/10.1029/WR022I09SP0135S DOI: https://doi.org/10.1029/WR022i09Sp0135S
Junior, A. C. G., Junior, E. C., Schwantes, D., Kaufmann, V., Braccini, A. L., da Silva, T. R. B., ... & Zimmermann, J. (2023). Atrazine fate in Rhodic Ferralsol grown with corn under high-intensity rainfall conditions. Agricultural Water Management, 276, 108065. https://doi.org/10.1016/J.AGWAT.2022.108065 DOI: https://doi.org/10.1016/j.agwat.2022.108065
Gustafson, D. I. (1989). Groundwater ubiquity score: a simple method for assessing pesticide leachability. Environmental Toxicology and Chemistry: An International Journal, 8(4), 339-357. https://doi.org/10.1002/ETC.5620080411 DOI: https://doi.org/10.1002/etc.5620080411
Haddad, K., Gheid, A., Haddad, D., & Oulmi, K. (2019). Experimental and numerical study on the leaching of pesticides into the groundwater through a porous medium: Effects of transport parameters. Environmental Technology & Innovation, 13, 244-256. https://doi.org/10.1016/j.eti.2018.12.009 DOI: https://doi.org/10.1016/j.eti.2018.12.009
Hall, K. E., Ray, C., Ki, S. J., Spokas, K. A., & Koskinen, W. C. (2015). Pesticide sorption and leaching potential on three Hawaiian soils. Journal of Environmental Management, 159, 227-234. https://doi.org/10.1016/j.jenvman.2015.04.046 DOI: https://doi.org/10.1016/j.jenvman.2015.04.046
Kara, İ., Yilmazer, D., & Akar, S. T. (2017). Metakaolin based geopolymer as an effective adsorbent for adsorption of zinc (II) and nickel (II) ions from aqueous solutions. Applied Clay Science, 139, 54-63. https://doi.org/10.1016/j.clay.2017.01.008 DOI: https://doi.org/10.1016/j.clay.2017.01.008
Li, Z., Alessi, D., Zhang, P., & Bowman, R. S. (2002). Organo-illite as a low permeability sorbent to retard migration of anionic contaminants. Journal of Environmental Engineering, 128(7), 583-587. https://doi.org/10.1061/(ASCE)0733-9372(2002)128:7(583) DOI: https://doi.org/10.1061/(ASCE)0733-9372(2002)128:7(583)
Meite, F., Alvarez-Zaldívar, P., Crochet, A., Wiegert, C., Payraudeau, S., & Imfeld, G. (2018). Impact of rainfall patterns and frequency on the export of pesticides and heavy-metals from agricultural soils. Science of the Total Environment, 616, 500-509. https://doi.org/10.1016/j.scitotenv.2017.10.297 DOI: https://doi.org/10.1016/j.scitotenv.2017.10.297
Mondal, R., Mukherjee, A., Biswas, S., & Kole, R. K. (2018). GC-MS/MS determination and ecological risk assessment of pesticides in aquatic system: a case study in Hooghly River basin in West Bengal, India. Chemosphere, 206, 217-230. https://doi.org/10.1016/j.chemosphere.2018.04.168 DOI: https://doi.org/10.1016/j.chemosphere.2018.04.168
Mualem, Y. (1976). A new model for predicting the hydraulic conductivity of unsaturated porous media. Water resources research, 12(3), 513-522. https://doi.org/10.1029/WR012I003P00513 DOI: https://doi.org/10.1029/WR012i003p00513
Naboulsi, A., El Mersly, L., Yazid, H., El Himri, M., Rafqah, S., & El Haddad, M. (2023). Adsorption behaviors and mechanisms by theoretical study of herbicide 2, 4, 5-Trichlorophenoxyacetic on activated carbon as a new biosorbent material. Journal of the Taiwan Institute of Chemical Engineers, 142, 104640. https://doi.org/10.1016/j.jtice.2022.104640 DOI: https://doi.org/10.1016/j.jtice.2022.104640
Peel, R. G., Benedek, A., & Crowe, C. M. (1981). A branched pore kinetic model for activated carbon adsorption. AIChE Journal, 27(1), 26-32. https://doi.org/10.1002/AIC.690270106 DOI: https://doi.org/10.1002/aic.690270106
Prem, D., & Gupta, R. L. (2009). Status of pesticides in India. Pesticide research journal, 21(2), 202-210.
Rasool, S., Rasool, T., & Gani, K. M. (2022). A review of interactions of pesticides within various interfaces of intrinsic and organic residue amended soil environment. Chemical Engineering Journal Advances, 100301. https://doi.org/10.1016/J.CEJA.2022.100301 DOI: https://doi.org/10.1016/j.ceja.2022.100301
Rezić, I. (2011). Prediction of the surface tension of surfactant mixtures for detergent formulation using Design Expert software. Monatshefte für Chemie-Chemical Monthly, 142(12), 1219-1225. https://doi.org/10.1007/S00706-011-0554-Y DOI: https://doi.org/10.1007/s00706-011-0554-y
Saikat, S., Mayukh, A., Aniruddha, G., Sukamal, S., & Koushik, B. (2016). Impact of chemical pesticides on environment-a farm level case study. Journal of Interacademicia, 20(4), 452-458.
Saquib, Q., Siddiqui, M. A., Ansari, S. M., Alwathnani, H. A., Musarrat, J., & Al‐Khedhairy, A. A. (2021). Cytotoxicity and genotoxicity of methomyl, carbaryl, metalaxyl, and pendimethalin in human umbilical vein endothelial cells. Journal of Applied Toxicology, 41(5), 832-846. https://doi.org/10.1002/JAT.4139 DOI: https://doi.org/10.1002/jat.4139
Schaap, M. G., Leij, F. J., & Van Genuchten, M. T. (2001). Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of hydrology, 251(3-4), 163-176. https://doi.org/10.1016/S0022-1694(01)00466-8 DOI: https://doi.org/10.1016/S0022-1694(01)00466-8
Šimůnek, J., Šejna, M., & Van Genuchten, M. TH. (2008). The Hydrus-1D Software Package for Simulating the One Dimensional Movement of Water, Heat, and Multiple Solutes in Variably Saturated Media, Version 4. Beta1.” ICGWMCTPS-70, International Ground Water Modeling Center, Colorado School of Mines, Golden, CO.
Sircar, S. (2017). Comments on practical use of Langmuir gas adsorption isotherm model. Adsorption, 23(1), 121-130. https://doi.org/10.1007/S10450-016-9839-0 DOI: https://doi.org/10.1007/s10450-016-9839-0
Spadotto, C. A. (2002). Screening method for assessing pesticide leaching potential. Pesticidas: revista de ecotoxicologia e meio ambiente, 12. https://doi.org/10.1016/S0022-1694(01)00466-8 DOI: https://doi.org/10.5380/pes.v12i0.3151
Suciu, N. A., & Capri, E. (2009). Adsorption of chlorpyrifos, penconazole and metalaxyl from aqueous solution by modified clays Part B Pesticides, food contaminants, and agricultural wastes. https://doi.org/10.1080/03601230902997543 DOI: https://doi.org/10.1080/03601230902997543
Sukul, P., & Spiteller, M. (2001). Influence of biotic and abiotic factors on dissipating metalaxyl in soil. Chemosphere, 45(6-7), 941-947. https://doi.org/10.1016/S0045-6535(01)00010-8 DOI: https://doi.org/10.1016/S0045-6535(01)00010-8
Sukul, P., & Spiteller, M. (2000). Metalaxyl: persistence, degradation, metabolism, and analytical methods. W. W George (Eds). Reviews of environmental contamination and toxicology, 164, 1-26
Sukul, P., Lamshöft, M., Zühlke, S., & Spiteller, M. (2013). Evaluation of sorption-desorption processes for metalaxyl in natural and artificial soils. Journal of Environmental Science and Health, Part B, 48(6), 431-441. https://doi.org/10.1080/03601234.2012.761831 DOI: https://doi.org/10.1080/03601234.2012.761831
USEPA (1994). Fact Sheet for Metalaxyl US Environmental Protection Agency.” United States Environmental Protection Agency. 1994. Available from: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjL-8XiitP8AhXkTmwGHWEOARIQFnoECAsQAQ&url=https%3A%2F%2Fwww3.epa.gov%2Fpesticides%2Fchem_search%2Freg_actions%2Freregistration%2Ffs_PC-113501_1-Sep-94.pdf&usg=AOvVaw1tJcksHFI55jXjA1CKVN7x
Vagi, M. C., & Petsas, A. S. (2022). Sorption/Desorption, Leaching, and Transport Behavior of Pesticides in Soils: A Review on Recent Advances and Published Scientific Research. Pesticides in Soils: Occurrence, Fate, Control and Remediation, 137-195. https://doi.org/10.1007/698_2021_803 DOI: https://doi.org/10.1007/698_2021_803
Wu, C., Zhang, S., Nie, G., Zhang, Z., & Wang, J. (2011). Adsorption and desorption of herbicide monosulfuron-ester in Chinese soils. Journal of environmental sciences, 23(9), 1524-1532. https://doi.org/10.1016/S1001-0742(10)60583-9
Yadav, R. K., Yadav, D. S., Rai, N., & Patel, K. K. (2003). Prospects of horticulture in north eastern region. HIMALAYAN ECOLOGY, 11(2), 13. https://doi.org/10.1016/S1001-0742(10)60583-9 DOI: https://doi.org/10.1016/S1001-0742(10)60583-9
Yorlano, M. F., Demetrio, P. M., & Rimoldi, F. (2022). Riparian strips as attenuation zones for the toxicity of pesticides in agricultural surface runoff: Relative influence of herbaceous vegetation and terrain slope on toxicity attenuation of 2, 4-D. Science of The Total Environment, 807, 150655. https://doi.org/10.1016/j.scitotenv.2021.150655 DOI: https://doi.org/10.1016/j.scitotenv.2021.150655
Copyright (c) 2023 the Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
PAGEPress has chosen to apply the Creative Commons Attribution NonCommercial 4.0 International License (CC BY-NC 4.0) to all manuscripts to be published.