The integration of geochemical and isotopic approaches for thermo-mineral water characterization: the case of Tebessa (North Eastern Algeria)


Submitted: 30 March 2023
Accepted: 22 June 2023
Published: 28 June 2023
Abstract Views: 540
PDF: 394
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

This research aims to assess the hydrogeochemical evolution and the assessment for drinking and irrigation use of the spring water from the alluvial aquifer and major karst aquifer systems in Tebessa (the northeastern part of Algeria). For achieving this goal, 25 groundwater samples from several springs, including thermo-mineral springs, were examined and subjected to multivariate statistical analysis (principal component analysis), isotopic approaches, and geochemical modelling. However, it was revealed that the hot waters interact at depth with Triassic evaporates located in the hydrothermal conduit (fault), giving rise to the Na+-Cl- water type. Furthermore, the freshwater characterized the karst aquifer marked by the Ca2+ HCO3 - water type with low salinity concentrations. On the other hand, the majority of cations and anions and electrical conductivity, which characterize the chemical composition of the overall water springs, were below the limits allowed for drinking water according to the standards. In terms of hydrochemical facies, it was discovered that throughout the study area, two chemical facies were predominant (Ca2+- HCO3 - and Na+- Cl-). Water-rock interaction, characterized by the dissolution of carbonates and silicates, plays a primordial role in the chemical composition of the groundwater. Stable isotopic analyses of the δ18O and δ2H compositions of the waters suggest that the cold waters of the study area are of meteoric origin. Anyway, it was concluded that the meteoric recharge was precipitation, which recharged from a higher altitude (600–1700 m) and infiltrated through deep faults and fractures in the carbonate formations of the Tebessa Mount.


Akhtar, N., Ishak, M. I. S., Ahmad, M. I., Umar, K., Md Yusuff, M. S., Anees, M. T., Qadir, A., & Ali Almanasir, Y. K. (2021). Modification of the Water Quality Index (WQI) Process for Simple Calculation Using the Multi-Criteria Decision-Making (MCDM) Method: A Review. Water, 13(7), 905. https://doi.org/10.3390/w13070905 DOI: https://doi.org/10.3390/w13070905

Amadi, A. N. (2011). Assessing the effects of Aladimma dumpsite on soil and groundwater using water quality index and factor analysis. Australian Journal of Basic and Applied Sciences, 5(11), 763–770.

Appelo, C., & Williemsen, A. Beekmanhe Grippioen (1999) Calculations and observations on salt water intrusion, II. Validation of a geochemical model with laboratory experiments. J Hydrol, 120, 225–250.

Appelo, C.A.J., Willemsen, A., Beekman, H. E., & Griffioen, J. (1990). Geochemical calculations and observations on salt water intrusions. II. Validation of a geochemical model with laboratory experiments. Journal of Hydrology, 120(1-4), 225–250. https://doi.org/10.1016/0022-1694(90)90151-M DOI: https://doi.org/10.1016/0022-1694(90)90151-M

Ayenew, T., Fikre, S., Wisotzky, F., Demlie, M., & Wohnlich, S. (2009a). Hierarchical cluster analysis of hydrochemical data as a tool for assessing the evolution and dynamics of groundwater across the Ethiopian rift. International Journal of Physical Sciences, 4(2), 76–90.

Ayenew, T., Fikre, S., Wisotzky, F., Demlie, M., & Wohnlich, S. (2009b). Hierarchical cluster analysis of hydrochemical data as a tool for assessing the evolution and dynamics of groundwater across the Ethiopian rift. International Journal of Physical Sciences, 4(2), 76–90.

Barkat, A., Bouaicha, F., Bouteraa, O., Mester, T., Ata, B., Balla, D., Rahal, Z., & Szabó, G. (2021). Assessment of Complex Terminal Groundwater Aquifer for Different Use of Oued Souf Valley (Algeria) Using Multivariate Statistical Methods, Geostatistical Modeling, and Water Quality Index. Water, 13(11), 1609. https://doi.org/10.3390/w13111609 DOI: https://doi.org/10.3390/w13111609

Barkat, A., Bouaicha, F., Mester, T., Debabeche, M., & Szabó, G. (2022). Assessment of Spatial Distribution and Temporal Variations of the Phreatic Groundwater Level Using Geostatistical Modelling: The Case of Oued Souf Valley—Southern East of Algeria. Water, 14(9), 1415. https://doi.org/10.3390/w14091415 DOI: https://doi.org/10.3390/w14091415

Belkhiri, L., Boudoukha, A., Mouni, L., & Baouz, T. (2010a). Application of multivariate statistical methods and inverse geochemical modeling for characterization of groundwater — A case study: Ain Azel plain (Algeria). Geoderma, 159(3-4), 390–398. https://doi.org/10.1016/j.geoderma.2010.08.016

Belkhiri, L., Boudoukha, A., Mouni, L., & Baouz, T. (2010b). Application of multivariate statistical methods and inverse geochemical modeling for characterization of groundwater—a case study: Ain Azel plain (Algeria). Geoderma, 159(3-4), 390–398. DOI: https://doi.org/10.1016/j.geoderma.2010.08.016

Blés, J. L., & Fleury, J. J. (1970a). Carte géologique de l’Algérie au 1/50000: feuille n 178, Morsott, avec notice explicative détaillée. Service De Cartes Géologique Et Sonatrach, Division D’hydrocarbure. Direction Explorations, Alger, Algerie.

Blés, J. L., & Fleury, J. J. (1970b). Carte géologique de l’Algérie au 1/50000: feuille n 178, Morsott, avec notice explicative détaillée. Service De Cartes Géologique Et Sonatrach, Division D’hydrocarbure. Direction Explorations, Alger, Algerie.

Bouaicha, F., Dib, H., Bouteraa, O., Manchar, N., Boufaa, K., Chabour, N., & Demdoum, A. (2019). Geochemical assessment, mixing behavior and environmental impact of thermal waters in the Guelma geothermal system, Algeria. Acta Geochimica, 38(5), 683–702. https://doi.org/10.1007/s11631-019-00324-2 DOI: https://doi.org/10.1007/s11631-019-00324-2

Bouteraa, O., Mebarki, A., Bouaicha, F., Nouaceur, Z., & Laignel, B. (2019). Groundwater quality assessment using multivariate analysis, geostatistical modeling, and water quality index (WQI): a case of study in the Boumerzoug-El Khroub valley of Northeast Algeria. Acta Geochimica, 38(6), 796–814. https://doi.org/10.1007/s11631-019-00329-x DOI: https://doi.org/10.1007/s11631-019-00329-x

Busico, G., Cuoco, E., Kazakis, N., Colombani, N., Mastrocicco, M., Tedesco, D., & Voudouris, K. (2018). Multivariate statistical analysis to characterize/discriminate between anthropogenic and geogenic trace elements occurrence in the Campania Plain, Southern Italy. Environmental Pollution (Barking, Essex : 1987), 234, 260–269. https://doi.org/10.1016/j.envpol.2017.11.053 DOI: https://doi.org/10.1016/j.envpol.2017.11.053

Călmuc, V. A., Călmuc, M., Țopa, C. M., Timofti, M., Iticescu, C., & Georgescu, L. P. (2018). Various methods for calculating the water quality index. Annals of the ”Dunarea De Jos” University of Galati. Fascicle II, Mathematics, Physics, Theoretical Mechanics, 41(1), 171–178. https://doi.org/10.35219/ann-ugal-math-phys-mec.2018.2.09 DOI: https://doi.org/10.35219/ann-ugal-math-phys-mec.2018.2.09

Chabour, N., Dib, H., Bouaicha, F., Bechkit, M. A., & Messaoud Nacer, N. (2021). A conceptual framework of groundwater flowpath and recharge in Ziban aquifer: south of Algeria. Sustainable Water Resources Management, 7(1), 36p. https://doi.org/10.1007/s40899-020-00483-8 DOI: https://doi.org/10.1007/s40899-020-00483-8

Chelih, F., Fehdi, C., & Khan, S. (2018). Characterization of the Hammamet basin aquifer (North-East of Algeria) through geochemical and geostructural methods and analysis. Journal of Water and Land Development, 37(1), 39–48. https://doi.org/10.2478/jwld-2018-0023 DOI: https://doi.org/10.2478/jwld-2018-0023

Chemseddine, F., Dalila, B., & Fethi, B. (2015). Characterization of the main karst aquifers of the Tezbent Plateau, Tebessa Region, Northeast of Algeria, based on hydrogeochemical and isotopic data. Environmental Earth Sciences, 74(1), 241–250. https://doi.org/10.1007/s12665-015-4480-x DOI: https://doi.org/10.1007/s12665-015-4480-x

Dixon, W., & Chiswell, B. (1992a). The use of hydrochemical sections to identify recharge areas and saline intrusions in alluvial aquifers, southeast Queensland, Australia. Journal of Hydrology, 135(1-4), 259–274.

Dixon, W., & Chiswell, B. (1992b). The use of hydrochemical sections to identify recharge areas and saline intrusions in alluvial aquifers, southeast Queensland, Australia. Journal of Hydrology, 135(1-4), 259–274. https://doi.org/10.1016/0022-1694(92)90091-9 DOI: https://doi.org/10.1016/0022-1694(92)90091-9

Drias, T., Khedidja, A., Belloula, M., Badraddine, S., & Saibi, H. (2020). Groundwater modelling of the Tebessa-Morsott alluvial aquifer (northeastern Algeria): A geostatistical approach. Groundwater for Sustainable Development, 11, 100444. https://doi.org/10.1016/j.gsd.2020.100444 DOI: https://doi.org/10.1016/j.gsd.2020.100444

Edition, F. (2011). Guidelines for drinking-water quality. WHO Chronicle, 38(4), 104–108.

Farnham, I.M., Johannesson, K.H., Singh, A.K., Hodge, V.F., & Stetzenbach, K.J. (2003). Factor analytical approaches for evaluating groundwater trace element chemistry data. Analytica Chimica Acta, 490(1-2), 123–138. https://doi.org/10.1016/S0003-2670(03)00350-7 DOI: https://doi.org/10.1016/S0003-2670(03)00350-7

Fehdi, C., Rouabhia, A., Baali, F., & Boudoukha, A. (2009). The hydrogeochemical characterization of Morsott-El Aouinet aquifer, Northeastern Algeria. Environmental Geology, 58(7). https://doi.org/10.1007/s00254-008-1667-4 DOI: https://doi.org/10.1007/s00254-008-1667-4

Fehdi, C., Rouabhia, A., Mechai, A., Debabza, M., Abla, K., & Voudouris, K. (2016). Hydrochemical and microbiological quality of groundwater in the Merdja area, Tébessa, North-East of Algeria. Applied Water Science, 6(1), 47–55. https://doi.org/10.1007/s13201-014-0209-3 DOI: https://doi.org/10.1007/s13201-014-0209-3

Foued, B., Hénia, D., Lazhar, B., Nabil, M., & Nabil, C. (2017). Hydrogeochemistry and geothermometry of thermal springs from the Guelma region, Algeria. Journal of the Geological Society of India, 90(2), 226–232. https://doi.org/10.1007/s12594-017-0703-y DOI: https://doi.org/10.1007/s12594-017-0703-y

Gayar, A. E., & Hamed, Y. (2018). Climate Change and Water Resources Management in Arab Countries. In A. Kallel, M. Ksibi, H. Ben Dhia, & N. Khélifi (Eds.), Advances in Science, Technology & Innovation. Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions (Vol. 100, pp. 89–91). Springer International Publishing. https://doi.org/10.1007/978-3-319-70548-4_31 DOI: https://doi.org/10.1007/978-3-319-70548-4_31

Gebrehiwot, T., van der Veen, A., & Maathuis, B. (2011). Spatial and temporal assessment of drought in the Northern highlands of Ethiopia. International Journal of Applied Earth Observation and Geoinformation, 13(3), 309–321. DOI: https://doi.org/10.1016/j.jag.2010.12.002

Giri, A., Bharti, V. K., Kalia, S., Kumar, K., Raj, T., & Chaurasia, O. P. (2019). Utility of multivariate statistical analysis to identify factors contributing river water quality in two different seasons in cold-arid high-altitude region of Leh-Ladakh, India. Applied Water Science, 9(2). https://doi.org/10.1007/s13201-019-0902-3 DOI: https://doi.org/10.1007/s13201-019-0902-3

Goher, M. E., Abdo, M. H., Mangood, A. H., & Hussein, M. M. (2015). Water quality and potential health risk assessment for consumption of Oreochromis niloticus from El-Bahr El-Pharaony Drain, Egypt. Fresenius Environ. Bull, 24(11), 3590–3602.

Güler, C., & Thyne, G. D. (2004). Hydrologic and geologic factors controlling surface and groundwater chemistry in Indian Wells-Owens Valley area, southeastern California, USA. Journal of Hydrology, 285(1-4), 177–198. https://doi.org/10.1016/j.jhydrol.2003.08.019 DOI: https://doi.org/10.1016/j.jhydrol.2003.08.019

Hamad, A., Baali, F., Hadji, R., Zerrouki, H., Besser, H., Mokadem, N., Legrioui, R., & Hamed, Y. (2018). Hydrogeochemical characterization of water mineralization in Tebessa-Kasserine karst system (Tuniso-Algerian Transboundry basin). Euro-Mediterranean Journal for Environmental Integration, 3(1). https://doi.org/10.1007/s41207-017-0045-6 DOI: https://doi.org/10.1007/s41207-017-0045-6

Hamad, A., Hadji, R., Bâali, F., Houda, B., Redhaounia, B., Zighmi, K., Legrioui, R., Brahmi, S., & Hamed, Y. (2018). Conceptual model for karstic aquifers by combined analysis of GIS, chemical, thermal, and isotopic tools in Tuniso-Algerian transboundary basin. Arabian Journal of Geosciences, 11(15). https://doi.org/10.1007/s12517-018-3773-2 DOI: https://doi.org/10.1007/s12517-018-3773-2

Karami, S., Madani, H., Katibeh, H., & Fatehi Marj, A. (2018). Assessment and modeling of the groundwater hydrogeochemical quality parameters via geostatistical approaches. Applied Water Science, 8(1). https://doi.org/10.1007/s13201-018-0641-x DOI: https://doi.org/10.1007/s13201-018-0641-x

Kassahun, Y., & Kebedee, T. (2012). Application of Principal Component Analysis in Surface Water Quality Monitoring. In P. Sanguansat (Ed.), Principal Component Analysis - Engineering Applications. InTech. https://doi.org/10.5772/38049 DOI: https://doi.org/10.5772/38049

King, S. F., Merle, A., Morisi, S., Shimizu, Y., & Tanimoto, M. (2014a). Neutrino Mass and Mixing: from Theory to Experiment. Advance online publication. https://doi.org/10.48550/arXiv.1402.4271

King, S. F., Merle, A., Morisi, S., Shimizu, Y., & Tanimoto, M. (2014b). Neutrino mass and mixing: from theory to experiment. New Journal of Physics, 16(4), 45018. DOI: https://doi.org/10.1088/1367-2630/16/4/045018

Kouadra, R., Demdoum, A., Chabour, N., & Benchikh, R. (2019). The use of hydrogeochemical analyses and multivariate statistics for the characterization of thermal springs in the Constantine area, Northeastern Algeria. Acta Geochimica, 38(2), 292–306. https://doi.org/10.1007/s11631-018-0298-z DOI: https://doi.org/10.1007/s11631-018-0298-z

Legrioui, R., Baali, F., Abdeslam, I., Hamad, A., Audra, P., Cailhol, D., & Jaillet, S. (2020). Hydrochemical and Isotopic Characterization of Karst Aquifer in the Region of Tebessa, Northeast Algeria. In C. Bertrand, S. Denimal, M. Steinmann, & P. Renard (Eds.), Advances in Karst Science. Eurokarst 2018, Besançon (pp. 223–231). Springer International Publishing. https://doi.org/10.1007/978-3-030-14015-1_25 DOI: https://doi.org/10.1007/978-3-030-14015-1_25

Loh, Y. S. A., Akurugu, B. A., Manu, E., & Aliou, A.-S. (2020). Assessment of groundwater quality and the main controls on its hydrochemistry in some Voltaian and basement aquifers, northern Ghana. Groundwater for Sustainable Development, 100296. https://doi.org/10.1016/j.gsd.2019.100296 DOI: https://doi.org/10.1016/j.gsd.2019.100296

Magaritz, M., Nadler, A., Koyumdjisky, H., & Dan, J. (1981a). The use of Na/Cl ratios to trace solute sources in a semiarid zone. Water Resources Research, 17(3), 602–608. https://doi.org/10.1029/WR017i003p00602

Magaritz, M., Nadler, A., Koyumdjisky, H., & Dan, J. (1981b). The use of Na/Cl ratios to trace solute sources in a semiarid zone. Water Resources Research, 17(3), 602–608. DOI: https://doi.org/10.1029/WR017i003p00602

Mahapatra, S. S., Sahu, M., Patel, R. K., & Panda, B. N. (2012). Prediction of Water Quality Using Principal Component Analysis. Water Quality, Exposure and Health, 4(2), 93–104. https://doi.org/10.1007/s12403-012-0068-9 DOI: https://doi.org/10.1007/s12403-012-0068-9

Mishra, A. (2010). Assessment of water quality using principal component analysis: A case study of the river Ganges. Journal of Water Chemistry and Technology, 32(4), 227–234. https://doi.org/10.3103/s1063455x10040077 DOI: https://doi.org/10.3103/S1063455X10040077

Paiu Mădălina, & Breabăn Iuliana Gabriela. (2014). Water QUALITY INDEX – AN INSTRUMENT FOR WATER RESOURCES MANAGEMENT. https://doi.org/10.13140/2.1.3736.3203

Parkhurst, D. L., & Appelo, C. A.J. (1999a). User's guide to PHREEQC (Version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Advance online publication. https://doi.org/10.3133/wri994259 DOI: https://doi.org/10.3133/wri994259

Parkhurst, D. L., & Appelo, C. A.J. (1999b). User's guide to PHREEQC (Version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water-Resources Investigations Report, 99(4259), 312.

am Piper. (1944). A graphic procedure in the geochemical interpretation of water analyses: American Geophysical Union Transactions, v. 25. DOI: https://doi.org/10.1029/TR025i006p00914

Rafighdoust, Y., Eckstein, Y., Harami, R. M., Gharaie, M. H. M., & Mahboubi, A. (2016a). Using inverse modeling and hierarchical cluster analysis for hydrochemical characterization of springs and Talkhab River in Tang-Bijar oilfield, Iran. Arabian Journal of Geosciences, 9(3), 241.

Rafighdoust, Y., Eckstein, Y., Harami, R. M., Gharaie, M. H. M., & Mahboubi, A. (2016b). Using inverse modeling and hierarchical cluster analysis for hydrochemical characterization of springs and Talkhab River in Tang-Bijar oilfield, Iran. Arabian Journal of Geosciences, 9(3), 2881. https://doi.org/10.1007/s12517-015-2129-4 DOI: https://doi.org/10.1007/s12517-015-2129-4

Raiber, M., White, P. A., Daughney, C. J., Tschritter, C., Davidson, P., & Bainbridge, S. E. (2012a). Three-dimensional geological modelling and multivariate statistical analysis of water chemistry data to analyse and visualise aquifer structure and groundwater composition in the Wairau Plain, Marlborough District, New Zealand. Journal of Hydrology, 436, 13–34.

Raiber, M., White, P. A., Daughney, C. J., Tschritter, C., Davidson, P., & Bainbridge, S. E. (2012b). Three-dimensional geological modelling and multivariate statistical analysis of water chemistry data to analyse and visualise aquifer structure and groundwater composition in the Wairau Plain, Marlborough District, New Zealand. Journal of Hydrology, 436-437(3), 13–34. https://doi.org/10.1016/j.jhydrol.2012.01.045 DOI: https://doi.org/10.1016/j.jhydrol.2012.01.045

Rouabhia, A., Baali, F., & Fehdi, C. (2010). Impact of agricultural activity and lithology on groundwater quality in the Merdja area, Tebessa, Algeria. Arabian Journal of Geosciences, 3(3), 307–318. https://doi.org/10.1007/s12517-009-0087-4 DOI: https://doi.org/10.1007/s12517-009-0087-4

Sedrati, N., & Djabri, L. (2014). Contribution of hydrochemistry to the characterization and assessment of groundwater resources: the case of Tebessa alluvial aquifer (Algeria). Proceedings of the International Association of Hydrological Sciences, 364, 458–463. https://doi.org/10.5194/piahs-364-458-2014 DOI: https://doi.org/10.5194/piahs-364-458-2014

Shrestha, S., & Kazama, F. (2007). Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan. Environmental Modelling & Software, 22(4), 464–475. DOI: https://doi.org/10.1016/j.envsoft.2006.02.001

Shweta, S. (2013). Dental abscess: A microbiological review. Dental Research Journal, 10(5), 585.

Tardy, Y. (1971). Characterization of the principal weathering types by the geochemistry of waters from some European and African crystalline massifs. Chemical Geology, 7(4), 253–271. DOI: https://doi.org/10.1016/0009-2541(71)90011-8

Tyagi, S., Sharma, B., Singh, P., & Dobhal, R. (2020). Water Quality Assessment in Terms of Water Quality Index. American Journal of Water Resources, 1(3), 34–38. https://doi.org/10.12691/ajwr-1-3-3 DOI: https://doi.org/10.12691/ajwr-1-3-3

Valder, J. F., Long, A. J., Davis, A. D., & Kenner, S. J. (2012). Multivariate statistical approach to estimate mixing proportions for unknown end members. Journal of Hydrology, 460-461, 65–76. https://doi.org/10.1016/j.jhydrol.2012.06.037 DOI: https://doi.org/10.1016/j.jhydrol.2012.06.037

Vila, J.-M. (1980). La chine alpine d'algérie oriontale et des confins Algéro-Tunisiens [, Toulouse]. EndNote Tagged Import Format.

Ward Jr, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58(301), 236–244. DOI: https://doi.org/10.1080/01621459.1963.10500845

WHO (2011). Guidelines for Drinking-Water Quality. WHO Chronicle, 38, 104-108.

Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2(1-3), 37–52. https://doi.org/10.1016/0169-7439(87)80084-9 DOI: https://doi.org/10.1016/0169-7439(87)80084-9

Xanthopoulos, P., Pardalos, P. M., & Trafalis, T. B. (2013). Principal component analysis. In Robust data mining (pp. 21–26). Springer. DOI: https://doi.org/10.1007/978-1-4419-9878-1_3

Yang, H., Xiao, Y., Hao, Q., Wang, L., Zhang, Y., Liu, K., Zhu, Y., Liu, G., Yin, S., & Xie, Z. (2023). Geochemical characteristics, mechanisms and suitability for sustainable municipal and agricultural water supply of confined groundwater in central North China Plain. Urban Climate, 49, 101459. https://doi.org/10.1016/j.uclim.2023.101459 DOI: https://doi.org/10.1016/j.uclim.2023.101459

Zereg, S., Boudoukha, A., & Benaabidate, L. (2018). Impacts of natural conditions and anthropogenic activities on groundwater quality in Tebessa plain, Algeria. Sustainable Environment Research, 28(6), 340–349. https://doi.org/10.1016/j.serj.2018.05.003 DOI: https://doi.org/10.1016/j.serj.2018.05.003

Lekrine, Y., Demdoum, A., & Bouaicha, F. (2023). The integration of geochemical and isotopic approaches for thermo-mineral water characterization: the case of Tebessa (North Eastern Algeria). Acque Sotterranee - Italian Journal of Groundwater, 12(2), 77–90. https://doi.org/10.7343/as-2023-667

Downloads

Download data is not yet available.

Citations