Application of physical clogging models to Managed Aquifer Recharge: a review of modelling approaches from engineering fields
Accepted: 19 July 2023
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Managed Aquifer Recharge (MAR) sites suffer from the long-lasting problem of clogging. The causes of clogging are physical, biological, chemical and mechanical processes and their complex interaction, with physical clogging being recognised as the predominant process. The intrusion and deposition of particles during water recharge affect the hydraulic properties of the infiltration surface, resulting in a decline in the infiltration capacity of the site over the operating years. Cleaning operations are necessary to restore the original infiltration rates. For this purpose, assessing the risk of clogging can determine the site’s vulnerability and improve the scheme’s design. Numerical models are essential to replicate physical clogging processes and predict the decline in infiltration rates. So far, predictive tools for physical clogging assessment have been missing in MAR literature. Hence, the purpose of this study is to analyse and reorganise physical clogging models from applied engineering fields dealing with water infiltration in natural heterogeneous systems. The modelling approaches are illustrated, starting from the main assumptions and conceptualisation of the soil volume and intruding particles. The individual processes are untangled from the multiple studies and reorganised in a systematic comparison of mathematical equations relevant to MAR applications. The numerical models’ predictive power is evaluated for transferability, following limitations and recommendations for a process-based model applicable to surface spreading schemes. Finally, perspectives are given for clogging risk assessment at MAR sites from modelling and site characterisation. The predictive tool could assist decision-makers in planning the MAR site by implementing cost-effective strategies to lower the risk of physical clogging.
Alem, A., Ahfir, N.-D., Elkawafi, A., & Wang, H. (2014). Hydraulic Operating Conditions and Particle Concentration Effects on Physical Clogging of a Porous Medium. Transport in Porous Media, 106(2), 303-321. https://doi.org/10.1007/s11242-014-0402-8 DOI: https://doi.org/10.1007/s11242-014-0402-8
Alem, A., Elkawafi, A., Ahfir, N.-D., & Wang, H. (2013). Filtration of kaolinite particles in a saturated porous medium: hydrodynamic effects. Hydrogeology Journal, 21(3), 573-586. https://doi.org/https://doi.org/10.1007/s10040-012-0948-x DOI: https://doi.org/10.1007/s10040-012-0948-x
Bai, R., & Tien, C. (2000). Effect of deposition in deep-bed filtration: determination and search of rate parameters. Journal of colloid and interface science, 231(2), 299-311. DOI: https://doi.org/10.1006/jcis.2000.7130
Bear, J. (1988). Dynamics of fluids in porous media. Courier Corporation.
Bedrikovetsky, P., Marchesin, D., Shecaira, F., Souza, A., Milanez, P., & Rezende, E. (2001). Characterisation of deep bed filtration system from laboratory pressure drop measurements. journal of Petroleum Science and Engineering, 32(2-4), 167-177. DOI: https://doi.org/10.1016/S0920-4105(01)00159-0
Blazejewski, R., & Murat-Blazejewska, S. (1997). Soil clogging phenomena in constructed wetlands with subsurface flow. Water Science and Technology, 35(5), 183-188. DOI: https://doi.org/10.2166/wst.1997.0193
Boller, M. A., & Kavanaugh, M. C. (1995). Particle characteristics and headloss increase in granular media filtration. Water Research, 29(4), 1139-1149. https://doi.org/10.1016/0043-1354(94)00256-7 DOI: https://doi.org/10.1016/0043-1354(94)00256-7
Bouwer, H. (2002). Artificial recharge of groundwater: hydrogeology and engineering. Hydrogeology Journal, 10(1), 121-142. https://doi.org/10.1007/s10040-001-0182-4 DOI: https://doi.org/10.1007/s10040-001-0182-4
Buik, N., & Willemsen, A. (2002). Clogging rate of recharge wells in porous media. In P. J. D. (Ed.) (Ed.), Management of Aquifer Recharge for Sustainability (pp. 195-198). CRC Press. DOI: https://doi.org/10.1201/9781003078838-40
Carman, P. C. (1937). Fluid flow through granular beds. Trans. Inst. Chem. Eng., 15, 150-166.
Conley, G., Beck, N., Riihimaki, C. A., & Tanner, M. (2020). Quantifying clogging patterns of infiltration systems to improve urban stormwater pollution reduction estimates. Water research X, 7, 100049. DOI: https://doi.org/10.1016/j.wroa.2020.100049
Dillon, P., Alley, W., Zheng, Y., & Vanderzalm, J. (2022). Managed aquifer recharge: Overview and governance. IAH Special Publication.
Dillon, P., Stuyfzand, P., Grischek, T., Lluria, M., Pyne, R. D. G., Jain, R. C., Bear, J., Schwarz, J., Wang, W., Fernandez, E., Stefan, C., Pettenati, M., van der Gun, J., Sprenger, C., Massmann, G., Scanlon, B. R., Xanke, J., Jokela, P., Zheng, Y., Rossetto, R., Shamrukh, M., Pavelic, P., Murray, E., Ross, A., Bonilla Valverde, J. P., Palma Nava, A., Ansems, N., Posavec, K., Ha, K., Martin, R., & Sapiano, M. (2018). Sixty years of global progress in managed aquifer recharge. Hydrogeology Journal, 27(1), 1-30. https://doi.org/10.1007/s10040-018-1841-z DOI: https://doi.org/10.1007/s10040-018-1841-z
Dillon, P. J., Hickinbotham, M. R., & Pavelic, P. (1994). Review of international experience in injecting water into aquifers for storage and reuse. In Water Down Under 94: Groundwater Papers; Preprints of Papers: Groundwater Papers; Preprints of Papers (pp. 13-14, 16-19). Institution of Engineers, Australia Barton, ACT.
Du, X., Ye, X., & Zhang, X. (2018). Clogging of saturated porous media by silt-sized suspended solids under varying physical conditions during managed aquifer recharge. Hydrological Processes, 32(14), 2254-2262. https://doi.org/10.1002/hyp.13162 DOI: https://doi.org/10.1002/hyp.13162
Duryea, P. D. (1996). Clogging layer development and behavior in infiltration basins used for soil aquifer treatment of wastewater Arizona State University].
Elimelech, M., Gregory, J., & Jia, X. (1998). Particle deposition and aggregation: measurement, modelling and simulation. Colloid and Surface Engineering Series.
Elrahmani, A., Al-Raoush, R. I., & Seers, T. D. (2023, 2023/09/01/). Clogging and permeability reduction dynamics in porous media: A numerical simulation study. Powder Technology, 427, 118736. https://doi.org/https://doi.org/10.1016/j.powtec.2023.118736 DOI: https://doi.org/10.1016/j.powtec.2023.118736
Escalante, E. (2013). Practical Criteria in the Design and Maintenance of MAR Facilities in Order to Minimise Clogging Impacts Obtained from Two Different Operative Sites in Spain. In (pp. 119-154).
Fatt, I. (1956). The network model of porous media. Transactions of the AIME, 207(01), 144-181. DOI: https://doi.org/10.2118/574-G
Federico, F. (2017). Particle Migration Phenomena Related to Hydromechanical Effects at Contact between Different Materials in Embankment Dams. In Granular Materials. https://doi.org/10.5772/67785 DOI: https://doi.org/10.5772/67785
Fichtner, T., Barquero, F., Sallwey, J., & Stefan, C. (2019). Assessing Managed Aquifer Recharge Processes under Three Physical Model Concepts. Water, 11(1). https://doi.org/10.3390/w11010107 DOI: https://doi.org/10.3390/w11010107
Gibson, S., Abraham, D., Heath, R., & Schoellhamer, D. (2009). Vertical gradational variability of fines deposited in a gravel framework. Sedimentology, 56(3), 661-676. https://doi.org/10.1111/j.1365-3091.2008.00991.x DOI: https://doi.org/10.1111/j.1365-3091.2008.00991.x
Glass, J., Šimůnek, J., & Stefan, C. (2020). Scaling factors in HYDRUS to simulate a reduction in hydraulic conductivity during infiltration from recharge wells and infiltration basins. Vadose Zone Journal, 19(1), e20027. DOI: https://doi.org/10.1002/vzj2.20027
Gruesbeck, C., & Collins, R. (1982). Entrainment and deposition of fine particles in porous media. Society of Petroleum Engineers Journal, 22(06), 847-856. DOI: https://doi.org/10.2118/8430-PA
Herzig, J. P., Leclerc, D. M., & Goff, P. L. (1970). Flow of Suspensions through Porous Media—Application to Deep Filtration. Industrial & Engineering Chemistry, 62(5), 8-35. https://doi.org/10.1021/ie50725a003 DOI: https://doi.org/10.1021/ie50725a003
Hua, G. F., Zhu, W., & Zhang, Y. H. (2010, Oct). A conceptual approach based on suspended solids to estimate clogging time in constructed wetlands. J Environ Sci Health A Tox Hazard Subst Environ Eng, 45(12), 1519-1525. https://doi.org/10.1080/10934529.2010.506105 DOI: https://doi.org/10.1080/10934529.2010.506105
Hutchison, A., Milczarek, M., & Banerjee, M. (2013). Clogging phenomena related to surface water recharge facilities. In Martin R (ed): Clogging Issues Associated with Managed Aquifer Recharge Methods, IAH Commission on Managing Aquifer Recharge, Australia, 106-118.
Indraratna, B., & Vafai, F. (1997). Analytical Model for Particle Migration within Base Soil-Filter System. Journal of Geotechnical and Geoenvironmental Engineering, 123(2), 100-109. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:2(100) DOI: https://doi.org/10.1061/(ASCE)1090-0241(1997)123:2(100)
Ives, K., & Pienvichitr, V. (1965). Kinetics of the filtration of dilute suspensions. Chemical Engineering Science, 20(11), 965-973. DOI: https://doi.org/10.1016/0009-2509(65)80094-X
Iwasaki, T. (1937). Some Notes on Sand Filtration. Journal AWWA, 29(10), 1591-1597. https://doi.org/10.1002/j.1551-8833.1937.tb14014.x DOI: https://doi.org/10.1002/j.1551-8833.1937.tb14014.x
Kadlec, R. H., & Wallace, S. (2009). Treatment wetlands. CRC Press Taylor & Francis Group. DOI: https://doi.org/10.1201/9781420012514
Kandra, H. S., McCarthy, D., Fletcher, T. D., & Deletic, A. (2014). Assessment of clogging phenomena in granular filter media used for stormwater treatment. Journal of Hydrology, 512, 518-527. https://doi.org/10.1016/j.jhydrol.2014.03.009 DOI: https://doi.org/10.1016/j.jhydrol.2014.03.009
Kanti Sen, T., & Khilar, K. C. (2006, Feb 28). Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media. Adv Colloid Interface Sci, 119(2-3), 71-96. https://doi.org/10.1016/j.cis.2005.09.001 DOI: https://doi.org/10.1016/j.cis.2005.09.001
Kovács, G. (1981). Seepage Hydraulics . Elsevier Scientific Publishers BV (North-HolIand), Amsterdam, The Netherlands.
Kozeny, J. (1927). Uber kapillare leitung der wasser in boden. Royal Academy of Science, Vienna, Proc. Class I, 136, 271-306.
Langergraber, G., Haberl, R., Laber, J., & Pressl, A. (2003). Evaluation of substrate clogging processes in vertical flow constructed wetlands. Water Science and Technology, 48(5), 25-34. DOI: https://doi.org/10.2166/wst.2003.0272
Li, Z., Yang, H., Sun, Z., Espinoza, D. N., & Balhoff, M. T. (2021). A Probability-Based Pore Network Model of Particle Jamming in Porous Media. Transport in Porous Media, 139(2), 419-445. DOI: https://doi.org/10.1007/s11242-021-01673-4
Lin, D., Hu, L.-m., Bradford, S., Zhang, X., & Lo, I. (2021, 10/01). Pore-Network Modeling of Colloid Transport and Retention Considering Surface Deposition, Hydrodynamic Bridging, and Straining. Journal of Hydrology, 603, 127020. https://doi.org/10.1016/j.jhydrol.2021.127020 DOI: https://doi.org/10.1016/j.jhydrol.2021.127020
Lippera, M. C., Werban, U., Rossetto, R., & Vienken, T. (2023b). Understanding and predicting physical clogging at managed aquifer recharge systems: A field-based modeling approach. Advances in Water Resources, 177, 104462. https://doi.org/https://doi.org/10.1016/j.advwatres.2023.104462 DOI: https://doi.org/10.1016/j.advwatres.2023.104462
Lippera, M. C., Werban, U., & Vienken, T. (2023a). Improving clogging predictions at managed aquifer recharge sites: a quantitative assessment on the vertical distribution of intrusive fines. Hydrogeology Journal, 31(1), 71-86. https://doi.org/10.1007/s10040-022-02581-7 DOI: https://doi.org/10.1007/s10040-022-02581-7
Locke, M., Indraratna, B., & Adikari, G. (2001). Time-Dependent Particle Transport through Granular Filters. Journal of Geotechnical and Geoenvironmental Engineering, 127(6), 521-529. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:6(521) DOI: https://doi.org/10.1061/(ASCE)1090-0241(2001)127:6(521)
Majumdar, P. K., Sekhar, M., Sridharan, K., & Mishra, G. C. (2008). Numerical Simulation of Groundwater Flow with Gradually Increasing Heterogeneity due to Clogging. Journal of Irrigation and Drainage Engineering, 134(3), 400-404. https://doi.org/doi:10.1061/(ASCE)0733-9437(2008)134:3(400) DOI: https://doi.org/10.1061/(ASCE)0733-9437(2008)134:3(400)
Maliva, R. G. (2020). Clogging. In R. G. Maliva (Ed.), Anthropogenic Aquifer Recharge: WSP Methods in Water Resources Evaluation Series No. 5 (pp. 307-342). Springer International Publishing. https://doi.org/10.1007/978-3-030-11084-0_11 DOI: https://doi.org/10.1007/978-3-030-11084-0_11
Martin, R. (2013). Clogging issues associated with managed aquifer recharge methods. IAH Commission on Managing Aquifer Recharge, Australia, 26-33.
Mays, D., & Martin, R. (2013). Clogging in managed aquifer recharge: flow, geochemistry, and clay colloids. Clogging Issues Associated with Managed Aquifer Recharge Methods, 14-24.
McDowell-Boyer, L. M., Hunt, J. R., & Sitar, N. (1986). Particle transport through porous media. Water Resources Research, 22(13), 1901-1921. https://doi.org/10.1029/WR022i013p01901 DOI: https://doi.org/10.1029/WR022i013p01901
Meadows, D. L., & Rowell, S. E. (1994). Core sample test method and apparatus. U.S. Patent No 5,325,723.
Muecke, T. W. (1979). Formation fines and factors controlling their movement in porous media. Journal of petroleum technology, 31(02), 144-150. DOI: https://doi.org/10.2118/7007-PA
Nivala, J., Knowles, P., Dotro, G., Garcia, J., & Wallace, S. (2012, Apr 15). Clogging in subsurface-flow treatment wetlands: measurement, modeling and management. Water Res, 46(6), 1625-1640. https://doi.org/10.1016/j.watres.2011.12.051 DOI: https://doi.org/10.1016/j.watres.2011.12.051
Pavelic, P., Dillon, P. J., Barry, K. E., Vanderzalm, J. L., Correll, R. L., & Rinck-Pfeiffer, S. M. (2007). Water quality effects on clogging rates during reclaimed water ASR in a carbonate aquifer. Journal of Hydrology, 334(1-2), 1-16. DOI: https://doi.org/10.1016/j.jhydrol.2006.08.009
Pavelic, P., Dillon, P. J., Mucha, M., Nakai, T., Barry, K. E., & Bestland, E. (2011, May). Laboratory assessment of factors affecting soil clogging of soil aquifer treatment systems. Water Res, 45(10), 3153-3163. https://doi.org/10.1016/j.watres.2011.03.027 DOI: https://doi.org/10.1016/j.watres.2011.03.027
Pendse, H., Tien, C., Rajagopalan, R., & Turian, R. (1978). Dispersion measurement in clogged filter beds: A diagnostic study on the morphology of particle deposits. AIChE Journal, 24(3), 473-485. DOI: https://doi.org/10.1002/aic.690240312
Pérez Paricio, A. (2001). Integrated modelling of clogging processes in artificial groundwater recharge. Universidad Politécnica de Cataluña. http://hdl.handle.net/2117/93526.
Pucher, B., & Langergraber, G. (2019). The State of the Art of Clogging in Vertical Flow Wetlands. Water, 11(11), 2400. https://www.mdpi.com/2073-4441/11/11/2400 DOI: https://doi.org/10.3390/w11112400
Pyne, R. D. G. (1995). Groundwater recharge and wells: a guide to aquifer storage recovery. 1st Edition, CRC press. https://doi.org/https://doi.org/10.1201/9780203719718 DOI: https://doi.org/10.1201/9780203719718
Racz, A. J., Fisher, A. T., Schmidt, C. M., Lockwood, B. S., & Los Huertos, M. (2012, Jul-Aug). Spatial and temporal infiltration dynamics during managed aquifer recharge. Groundwater, 50, 562-570. https://doi.org/10.1111/j.1745-6584.2011.00875.x DOI: https://doi.org/10.1111/j.1745-6584.2011.00875.x
Reddi, L. N., Ming, X., Hajra, M. G., & Lee, I. M. (2000). Permeability Reduction of Soil Filters due to Physical Clogging. Journal of Geotechnical and Geoenvironmental Engineering, 126(3), 236-246. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:3(236) DOI: https://doi.org/10.1061/(ASCE)1090-0241(2000)126:3(236)
Reddi, L. N., Xiao, M., Hajra, M. G., & Lee, I. M. (2005). Physical clogging of soil filters under constant flow rate versus constant head. Canadian geotechnical journal, 42(3), 804-811. DOI: https://doi.org/10.1139/t05-018
Rege, S. D., & Fogler, H. S. (1988). A network model for deep bed filtration of solid particles and emulsion drops. AIChE Journal, 34(11), 1761-1772. https://doi.org/10.1002/aic.690341102 DOI: https://doi.org/10.1002/aic.690341102
Rinck-Pfeiffer, S., Ragusa, S., Sztajnbok, P., & Vandevelde, T. (2000). Interrelationships between biological, chemical, and physical processes as an analog to clogging in aquifer storage and recovery (ASR) wells. Water Research, 34(7), 2110-2118. DOI: https://doi.org/10.1016/S0043-1354(99)00356-5
Roque, C., Chauveteau, G., Renard, M., Thibault, G., Bouteca, M., & Rochon, J. (1995). Mechanisms of formation damage by retention of particles suspended in injection water. SPE European Formation Damage Conference, DOI: https://doi.org/10.2118/30110-MS
Sallwey, J., Barquero, F., Fichtner, T., & Stefan, C. (2019). Planning MAR Schemes Using Physical Models: Comparison of Laboratory and Field Experiments. Applied Sciences, 9(18). https://doi.org/10.3390/app9183652 DOI: https://doi.org/10.3390/app9183652
Schippers, J. C., & Verdouw, J. (1980). The modified fouling index, a method of determining the fouling characteristics of water. Desalination, 32, 137-148. https://doi.org/10.1016/s0011-9164(00)86014-2 DOI: https://doi.org/10.1016/S0011-9164(00)86014-2
Schuler, U. (1996). Scattering of the composition of soils. An aspect for the stability of granular filters. Geofilters,
Silveira, A. (1965). An analysis of the problem of washing through in protective filters. Proceedings,
Terzaghi, K., Peck, R. B., & Mesri, G. (1967). Soil Mechanics in Engineering Practice, John Wiley & Sons. Inc., New York.
Torkzaban, S., Bradford, S. A., Vanderzalm, J. L., Patterson, B. M., Harris, B., & Prommer, H. (2015, Oct). Colloid release and clogging in porous media: Effects of solution ionic strength and flow velocity. J Contam Hydrol, 181, 161-171. https://doi.org/10.1016/j.jconhyd.2015.06.005 DOI: https://doi.org/10.1016/j.jconhyd.2015.06.005
Wang, Z., Du, X., Yang, Y., & Ye, X. (2012). Surface clogging process modeling of suspended solids during urban stormwater aquifer recharge. Journal of Environmental Sciences, 24(8), 1418-1424. https://doi.org/10.1016/s1001-0742(11)60961-3 DOI: https://doi.org/10.1016/S1001-0742(11)60961-3
Wennberg, K., & Sharma, M. (1997). Determination of the filtration coefficient and the transition time for water injection wells. SPE European Formation Damage Conference, DOI: https://doi.org/10.2118/38181-MS
Witt, K. (1993). Reliability study of granular filters. Filters in geotechnical and hydraulic engineering, 35-42.
Xie, Y., Wang, Y., Huo, M., Geng, Z., & Fan, W. (2020). Risk of physical clogging induced by low-density suspended particles during managed aquifer recharge with reclaimed water: Evidences from laboratory experiments and numerical modeling. Environmental research, 186, 109527. DOI: https://doi.org/10.1016/j.envres.2020.109527
Xiong, Q., Baychev, T. G., & Jivkov, A. P. (2016, 2016/09/01/). Review of pore network modelling of porous media: Experimental characterisations, network constructions and applications to reactive transport. Journal of Contaminant Hydrology, 192, 101-117. https://doi.org/https://doi.org/10.1016/j.jconhyd.2016.07.002 DOI: https://doi.org/10.1016/j.jconhyd.2016.07.002
Ye, X., Cui, R., Du, X., Ma, S., Zhao, J., Lu, Y., & Wan, Y. (2019). Mechanism of suspended kaolinite particle clogging in porous media during managed aquifer recharge. Groundwater, 57(5), 764-771. DOI: https://doi.org/10.1111/gwat.12872
Zamani, A., & Maini, B. (2009). Flow of dispersed particles through porous media — Deep bed filtration. Journal of Petroleum Science and Engineering, 69(1-2), 71-88. https://doi.org/10.1016/j.petrol.2009.06.016 DOI: https://doi.org/10.1016/j.petrol.2009.06.016
Zhang, H., Xu, Y., & Kanyerere, T. (2020). A review of the managed aquifer recharge: Historical development, current situation and perspectives. Physics and Chemistry of the Earth, Parts A/B/C, 102887. DOI: https://doi.org/10.1016/j.pce.2020.102887
Zou, Z., Shu, L., Min, X., & Chifuniro Mabedi, E. (2019). Clogging of Infiltration Basin and Its Impact on Suspended Particles Transport in Unconfined Sand Aquifer: Insights from a Laboratory Study. Water, 11(5). https://doi.org/10.3390/w11051083 DOI: https://doi.org/10.3390/w11051083
Copyright (c) 2023 the Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
PAGEPress has chosen to apply the Creative Commons Attribution NonCommercial 4.0 International License (CC BY-NC 4.0) to all manuscripts to be published.