Magnesium and groundwater flow relationship in karst aquifers: a tool for exploitation management of springs
Accepted: 31 August 2023
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Karst aquifers are characterized by different types of groundwater flow, related to different types of permeability due to the simultaneous presence of matrix, fractures and conduits. The presence of a well-developed karst conduit system leads to a rapid circulation of groundwater within the aquifer and a pulse-type response of the spring flow to the rainfall inputs, with a potential fast transport of contaminants from the hydrogeological basin surface to the discharge zones. Supported by hydro chemical analyses of spring water samples and single discharge measurements, it was possible to develop specific mass balance models, correlating ion content to spring flowrates. Specifically, Mg2+ content revealed a reliable application for spring baseflow separation in karst settings. Once the local model has been set, its conservative behaviour, in mostly limestone-dominant aquifers, allows using Mg2+ as a natural tracer of groundwater flow, distinguishing conduit flow (overflow) and diffuse flow (baseflow) occurrence in the spring outlet, without additional discharge measurements. In karst settings, the difficulty in continuously monitoring the spring discharge values makes this application interesting for exploitation management. This study shows the results obtained for two springs located in Central Italy, confirming that monitoring groundwater quality in karst environments is often the key for successfully characterizing springs and assessing the total yield when direct measurements are not available.
Bakalowicz, M. (2005). Karst groundwater: A challenge for new resources. Hydrogeology Journal, 13(1), 148–160. https://doi.org/10.1007/s10040-004-0402-9 DOI: https://doi.org/10.1007/s10040-004-0402-9
Bakalowicz, M. (2018). Coastal Karst groundwater in the mediterranean: A resource to be preferably exploited onshore, not from Karst Submarine springs. In Geosciences (Switzerland) (Vol. 8, Issue 7). MDPI AG. https://doi.org/10.3390/geosciences8070258 DOI: https://doi.org/10.3390/geosciences8070258
Balacco, G., Alfio, M. R., Parisi, A., Panagopoulos, A., & Fidelibus, M. D. (2022). Application of short time series analysis for the hydrodynamic characterization of a coastal karst aquifer: The Salento aquifer (Southern Italy). Journal of Hydroinformatics, 24(2), 420–443. https://doi.org/10.2166/hydro.2022.135 DOI: https://doi.org/10.2166/hydro.2022.135
Banzato, C., Waele, J. De, Fiorucci, A., Vigna, B., Torino, P., & Duca, C. (2011). Study of springs and karst aquifers by monitoring and geochemical analysis. H2Kasrt, 9th Conference Om Limestone Hydrogeology, Besançon, France, September 1-3,2011, 45–48.
Bencala, K. E., McKnight, D. M., & Zellweger, G. W. (1987). Evaluation of Natural Tracers in an Acidic and Metal-Rich Stream and in studying chemical mass balance has been used to calculate the relative importance of subsurface inflow along an extended of et al ., 1982 ]. During a series settings or accurate using. Water Resources Research, 23(5), 827–836. DOI: https://doi.org/10.1029/WR023i005p00827
Chapman, P. J., Reynolds, B., & Wheater, H. S. (1997). Sources and controls of calcium and magnesium in storm runoff: The role of groundwater and ion exchange reactions along water flowpaths. In Hydrology and Earth System Sciences (Vol. 1, Issue 3, pp. 671–685). https://doi.org/10.5194/hess-1-671-1997 DOI: https://doi.org/10.5194/hess-1-671-1997
Chimenti, M., Natali, S., Giannecchini, R., Zanchetta, G., Baneschi, I., Doveri, M., Isola, I., & Piccini, L. (2023). Hydrogeochemistry and Isotopic Composition of Waters in the Renella Cave (Central Italy): New Insights into Groundwater Dynamics. Water (Switzerland), 15(9). https://doi.org/10.3390/w15091764 DOI: https://doi.org/10.3390/w15091764
Citrini, A., Camera, C., & Beretta, G. Pietro. (2020). Nossana Spring (Northern Italy) under Climate Change: Projections of future discharge rates and water availability. Water (Switzerland), 12(2). https://doi.org/10.3390/w12020387 DOI: https://doi.org/10.3390/w12020387
De Filippi, F. M., Iacurto, S., Grelle, G., & Sappa, G. (2021). Magnesium as environmental tracer for karst spring baseflow/overflow assessment—a case study of the pertuso karst spring (Latium region, Italy). Water (Switzerland), 13(1). https://doi.org/10.3390/w13010093 DOI: https://doi.org/10.3390/w13010093
Ducci, D., & Lasagna, M. (2019). Groundwater stress and vulnerability. In Sustainable Water Resources Management (Vol. 5, Issue 4, pp. 1379–1380). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s40899-019-00356-9 DOI: https://doi.org/10.1007/s40899-019-00356-9
Fiorillo, F. (2014). The Recession of Spring Hydrographs, Focused on Karst Aquifers. Water Resources Management, 28(7), 1781–1805. https://doi.org/10.1007/s11269-014-0597-z DOI: https://doi.org/10.1007/s11269-014-0597-z
Fiorillo, F., & Malik, P. (2019). Hydraulic behavior of karst aquifers. Water (Switzerland), 11(8), 10–15. https://doi.org/10.3390/w11081563 DOI: https://doi.org/10.3390/w11081563
Fleury, P., Bakalowicz, M., & de Marsily, G. (2007). Submarine springs and coastal karst aquifers: A review. Journal of Hydrology, 339(1–2), 79–92. https://doi.org/10.1016/j.jhydrol.2007.03.009 DOI: https://doi.org/10.1016/j.jhydrol.2007.03.009
Ford, D., & Williams, P. (2013). Karst Hydrogeology and Geomorphology. Karst Hydrogeology and Geomorphology, 1–562. https://doi.org/10.1002/9781118684986 DOI: https://doi.org/10.1002/9781118684986
Goldscheider, N., Chen, Z., Auler, A. S., Bakalowicz, M., Broda, S., Drew, D., Hartmann, J., Jiang, G., Moosdorf, N., Stevanovic, Z., & Veni, G. (2020). Global distribution of carbonate rocks and karst water resources. Hydrogeology Journal, 28(5), 1661–1677. https://doi.org/10.1007/s10040-020-02139-5 DOI: https://doi.org/10.1007/s10040-020-02139-5
Gori, F., Paternoster, M., Barbieri, M., Buttitta, D., Caracausi, A., Parente, F., Sulli, A., & Petitta, M. (2023). Hydrogeochemical multi-component approach to assess fluids upwelling and mixing in shallow carbonate-evaporitic aquifers (Contursi area, southern Apennines, Italy). Journal of Hydrology, 618. https://doi.org/10.1016/j.jhydrol.2023.129258 DOI: https://doi.org/10.1016/j.jhydrol.2023.129258
Grappein, B., Lasagna, M., Capodaglio, P., Caselle, C., & De Luca, D. A. (2021). Hydrochemical and isotopic applications in the western aosta valley (Italy) for sustainable groundwater management. Sustainability (Switzerland), 13(2), 1–24. https://doi.org/10.3390/su13020487 DOI: https://doi.org/10.3390/su13020487
Hartmann, A., Goldscheider, N., Wagener, T., Lange, J., & Weiler, M. (2013). Karst water resources in a changing world. Review of Geophysics, 2013(September), 218–242. https://doi.org/10.1002/2013RG000443.Received DOI: https://doi.org/10.1002/2013RG000443
Iacurto, S., Grelle, G., De Filippi, F. M., & Sappa, G. (2021). Karst recharge areas identified by combined application of isotopes and hydrogeological budget. Water (Switzerland), 13(14). https://doi.org/10.3390/w13141965 DOI: https://doi.org/10.3390/w13141965
Jarraya-Horriche, F., Benabdallah, S., & Ayadi, M. (2020). Groundwater monitoring for assessing artificial recharge in the Mediterranean coastal aquifer of Korba (Northeastern Tunisia). Environmental Monitoring and Assessment, 192(7). https://doi.org/10.1007/s10661-020-08408-w DOI: https://doi.org/10.1007/s10661-020-08408-w
Koit, O., Mayaud, C., Kogovšek, B., Vainu, M., Terasmaa, J., & Marandi, A. (2022). Surface water and groundwater hydraulics of lowland karst aquifers of Estonia. Journal of Hydrology, 610. https://doi.org/10.1016/j.jhydrol.2022.127908 DOI: https://doi.org/10.1016/j.jhydrol.2022.127908
Koit, O., Retiķe, I., Bikše, J., Terasmaa, J., Tarros, S., Abreldaal, P., Babre, A., Hunt, M., Pärn, J., Vainu, M., Marandi, A., Sisask, K., Lode, E., & Männik, M. (2023). Hydrochemical signatures of springs for conceptual model development to support monitoring of transboundary aquifers. Groundwater for Sustainable Development, 21. https://doi.org/10.1016/j.gsd.2023.100927 DOI: https://doi.org/10.1016/j.gsd.2023.100927
Lange, J., Greenbaum, N., Husary, S., Timmer, J., Leibundgut, C., & Schick, A. P. (2003). Tracers for runoff generation studies in a Mediterranean region: Comparison of different scales. IAHS-AISH Publication, 278, 117–123.
Lorenzi, V., Barberio, M. D., Sbarbati, C., & Petitta, M. (2023). Groundwater recharge distribution due to snow cover in shortage conditions (2019–22) on the Gran Sasso carbonate aquifer (Central Italy). Environmental Earth Sciences, 82(9). https://doi.org/10.1007/s12665-023-10889-0 DOI: https://doi.org/10.1007/s12665-023-10889-0
Mammoliti, E., Fronzi, D., Palpacelli, S., Biagiola, N., & Tazioli, A. (2023). Assessment of urban landslide groundwater characteristics and origin using artificial tracers, hydro-chemical and stable isotope approaches. Environmental Earth Sciences, 82(9). https://doi.org/10.1007/s12665-023-10887-2 DOI: https://doi.org/10.1007/s12665-023-10887-2
Nanni, T., Vivalda, P. M., Palpacelli, S., Marcellini, M., & Tazioli, A. (2020). Groundwater circulation and earthquake-related changes in hydrogeological karst environments: a case study of the Sibillini Mountains (central Italy) involving artificial tracers. Hydrogeology Journal, July. https://doi.org/10.1007/s10040-020-02207-w DOI: https://doi.org/10.1007/s10040-020-02207-w
Nicolini, R., Di Matteo, L., Galdenzi, S., Baldoni, F., Frondini, F., & Valigi, D. (2022). Study of dilution processes of sulfidic aquifer hosted by the Fiume-Vento karstic complex, Frasassi (Central Italy). Acque Sotterranee - Italian Journal of Groundwater, 11(3), 7–17. https://doi.org/10.7343/as-2022-567 DOI: https://doi.org/10.7343/as-2022-567
Parisi, A., Monno, V., & Fidelibus, M. D. (2018). Cascading vulnerability scenarios in the management of groundwater depletion and salinization in semi-arid areas. International Journal of Disaster Risk Reduction, 30, 292–305. https://doi.org/10.1016/j.ijdrr.2018.03.004 DOI: https://doi.org/10.1016/j.ijdrr.2018.03.004
Ravbar, N., Kovačič, G., Petrič, M., Kogovšek, J., Brun, C., & Koželj, A. (2018). Climatological trends and anticipated karst spring quantity and quality: case study of the Slovene Istria. Geological Society, London, Special Publications, 466(1), 295 LP – 305. https://doi.org/10.1144/SP466.19 DOI: https://doi.org/10.1144/SP466.19
Rovan, L., Lojen, S., Zuliani, T., Kanduč, T., Petrič, M., Horvat, B., Rusjan, S., & Štrok, M. (2020). Comparison of uranium isotopes and classical geochemical tracers in Karst Aquifer of Ljubljanica River catchment (Slovenia). Water (Switzerland), 12(7), 1–30. https://doi.org/10.3390/w12072064 DOI: https://doi.org/10.3390/w12072064
Sappa, G., De Filippi, F. M., Iacurto, S., & Grelle, G. (2019). Evaluation of minimum karst spring discharge using a simple rainfall-input model: The case study of Capodacqua di Spigno Spring (Central Italy). Water (Switzerland), 11(4). https://doi.org/10.3390/w11040807 DOI: https://doi.org/10.3390/w11040807
Sappa, G., Ferranti, F., & de Filippi, F. M. (2016). Hydrogeological water budget of the Karst aquifer feeding Pertuso spring (Central Italy). International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 1. https://doi.org/10.5593/SGEM2016/B11/S02.107 DOI: https://doi.org/10.5593/SGEM2016/B11/S02.107
Sappa, G., Ferranti, F., De Filippi, F. M., & Cardillo, G. (2017). Mg2+-based method for the Pertuso spring discharge evaluation. Water (Switzerland), 9(1). https://doi.org/10.3390/w9010067 DOI: https://doi.org/10.3390/w9010067
Sappa, G., Ferranti, F., Iacurto, S., & De Filippi, F. M. (2018). Effects of climate change on groundwater feeding the Mazzoccolo and Capodacqua di Spigno Springs (Central Italy): First quantitative assestments. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 18(3.1). https://doi.org/10.5593/sgem2018/3.1/S12.029 DOI: https://doi.org/10.5593/sgem2018/3.1/S12.029
Schemel, L. E., Cox, M. H., Runkel, R. L., & Kimball, B. A. (2006). Multiple injected and natural conservative tracers quantify mixing in a stream confluence affected by acid mine drainage near Silverton, Colorado. Hydrological Processes, 20(13), 2727–2743. https://doi.org/10.1002/hyp.6081 DOI: https://doi.org/10.1002/hyp.6081
Sivelle, V., Labat, D., Mazzilli, N., Massei, N., & Jourde, H. (2019). Dynamics of the flow exchanges between matrix and conduits in Karstified watersheds at multiple temporal scales. Water (Switzerland), 11(3), 1–15. https://doi.org/10.3390/w11030569 DOI: https://doi.org/10.3390/w11030569
Stevanović, Z., Stevanović, A. M., Pekaš, Ž., Eftimi, R., & Marinović, V. (2022). Environmental flows and demands for sustainable water use in protected karst areas of the Western Balkans. Carbonates and Evaporites, 37(1). https://doi.org/10.1007/s13146-021-00754-1 DOI: https://doi.org/10.1007/s13146-021-00754-1
Tamburini, A., & Menichetti, M. (2020). Groundwater circulation in fractured and karstic aquifers of the Umbria-Marche Apennine. Water (Switzerland), 12(4). https://doi.org/10.3390/W12041039 DOI: https://doi.org/10.3390/w12041039
Vigna, B. (2014). Acquisizione ed interpretazione dei dati di monitoraggio delle sorgenti. Geoingegneria Ambientale e Mineraria, 143(3), 43–58.
White, W. B. (2002). Karst hydrology: Recent developments and open questions. Engineering Geology, 65(2–3), 85–105. https://doi.org/10.1016/S0013-7952(01)00116-8 DOI: https://doi.org/10.1016/S0013-7952(01)00116-8
White, W. B. (2012). Conceptual Models for Carbonate Aquifers. Ground Water, 50(2), 180–186. https://doi.org/10.1111/j.1745-6584.2012.00923.x DOI: https://doi.org/10.1111/j.1745-6584.2012.00923.x
Copyright (c) 2023 the Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
PAGEPress has chosen to apply the Creative Commons Attribution NonCommercial 4.0 International License (CC BY-NC 4.0) to all manuscripts to be published.