Arsenic in the groundwater aquifers of the Venetian Plain: geochemical modelling and occurrence of As-sulfides minerals, a review of data from the medio Brenta domain (Italy)


Submitted: 9 October 2023
Accepted: 12 February 2024
Published: 29 February 2024
Abstract Views: 455
PDF: 308
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

  • Fabio Tateo National Research Council of Italy (CNR), Institute of Geosciences and Earth Resources (IGG), Padua, Italy.
  • Paolo Fabbri Department of Geosciences, University of Padua, Italy.
  • Maria Chiara Dalconi Department of Geosciences, University of Padua, Italy.
  • Luca Peruzzo National Research Council of Italy (CNR), Institute of Geosciences and Earth Resources (IGG), Padua, Italy.

The Venetian Plain is known for areas with high concentrations of arsenic (As) in groundwater (up to more than 400 μg/L; exceptionally 647μg/L, in selected areas). A study area was chosen, north of Padua, which exhibits typical residential, industrial, and agricultural characteristics similar to most Western countries and lacks hydrothermal, volcanic, or anthropogenic sources of arsenic. The pilot area was the focus of several studies which are reviewed in this note. The objectives of the studies were to verify the distribution of As concentrations in groundwater and sediments (mineralogical and geochemical analysis of groundwater sediments and of filtered and unfiltered groundwater) and to model the mobility of arsenic arising from water-rock interaction. The grain size of aquifer reservoirs includes gravel, sand, silt, and clay. The amount of organic matter in the aquifer sediments of the study area seems peculiar (higher) compared to other plains in the world; it influences the redox potential and the relative concentration of As in groundwater. Arsenic contamination in groundwater and redox conditions varied greatly in the area. Groundwater under oxidizing and highly reducing conditions had much lower arsenic concentrations compared to groundwater under intermediate reducing conditions. Arsenic minerals (such as realgar-pararealgar) occur in aquifer sediments and they were documented in the studied materials by different analytical techniques for the first time in the context of the Italian plains. Since these minerals are rare throughout the world in plain sediments not affected by volcanic or hydrothermal activity, their occurrence is a distinctive feature of the Venetian Plain aquifer. These arsenic minerals were found in peat sediments of the study area, consistent with geochemical modeling results, which require highly reducing conditions for their precipitation from groundwater. Modeling suggests that under oxidizing and up to slightly reducing conditions (from 200 mV to -50 mV), arsenic is adsorbed on solid phases, but a further decrease in redox potential leads arsenic desorption from solids and consequent groundwater contamination (from -50 mV to -250 mV). If the redox potential becomes even more negative (below -250 mV), geochemical conditions are favorable to the formation of arsenic sulfides. The precipitation of the realgar-pararealgar phases, predicted by the geochemical model, proceeds by extracting arsenic from the groundwater and quantitatively accounts for the lower arsenic concentration measured in the highly reducing groundwater of the study area.


Andrews, F. V., Branscum, A., Hystad, P., Smit, E., Afroz, S., Golam, M., Sharif, O., Rahman, M., Quamruzzaman, Q., Christiani, D. C., & Kile, M. L. (2022). Testing the Limit: Evaluating Drinking Water Arsenic Regulatory Levels Based on Adverse Pregnancy Outcomes in Bangladesh. Toxics, 10(10), 600 https://doi.org/10.3390/toxics10100600

Armiento, G., Baiocchi, A., Cremisini, C., Crovato, C., Lotti, F., Lucentini, L., Mazzuoli, M., Nardi, E., Piscopo, V., Proposito, M., & Veschetti, E. (2015). An Integrated Approach to Identify Water Resources for Human Consumption in an Area Affected by High Natural Arsenic Content. Water, 7(9), 5091–5114. https://doi.org/10.3390/w7095091

ARPAV (2009). PROGETTO Mo.Sp.As. Monitoraggio sperimentale dello ione arsenico nelle acque sotterranee della media e bassa pianura veneta. PROJECT Mo.Sp.As. Experimental monitoring of the arsenic ion in the groundwater of the middle and lower Venetian plain. 95pp. Relazione tecnicoscientifica n. 17/2009, Direzione Tecnica, Servizio Acque Interne (ARPAV).

ARPAV (2019). ALINA. Analisi dei livelli di fondo naturale per alcune sostanze presenti nelle acque sotterranee della falda superficiale dell’acquifero differenziato del bacino scolante in laguna di Venezia (bacino deposizionale del Brenta). ALINA. Analysis of natural background levels for some substances present in the groundwater of the superficial aquifer of the differentiated aquifer of the drainage basin in the Venice lagoon (Brenta depositional basin). pp. 101, ARPAV.

ARPAV (2023). Campagne di ricerca delle sostanze perfluoroalchiliche (PFAS) nei punti di monitoraggio della rete regionale acque sotterranee, anno 2022. Research campaigns for perfluoroalkyl substances (PFAS) in the monitoring points of the regional groundwater network, year 2022. pp. 52. APRAV

Artioli, G., Berto, D., Dalconi, M.C., Gò, E., Peruzzo, L. & Tateo, F., (2019). Occurrence of pararealgar in As-rich aquifer sediments of the Venetian plain (Italy). Meeting SIMP-SGI-SOGEI, Parma 2019: 343. Abstract book available at: www.socgeol.it/files/download/pubblicazioni/Abstract%20Book/Parma%202019.pdf

Baldantoni, E, & Ferronato, A. (1995). Presenza di arsenico nelle acque di falda del Mediobrenta: aspetti ambientali e sanitari. Presence of arsenic in the groundwater of Mediobrenta: environmental and health aspects. Quaderni di Geologia Applicata, supp. vol. 2, 421–27.

Bowel R.J., Alpers C.N., Jamieson H.E., Nordstrom D.K., Majzlan J. (2014). The Environmental Geochemistry of Arsenic An Overview. Reviews in Mineralogy & Geochemistry, 79, 1-16. http://dx.doi.org/10.2138/rmg.2014.79.1

Bustaffa, E., & Bianchi, F. (2014). Studi epidemiologici su popolazioni umane esposte a basse e moderate concentrazioni di arsenico nelle acque potabili. Epidemiological studies on population exposed to low-to- moderate arsenic concentration in drinking water. Epidemiologia & Prevenzione, 38(3-4) suppl 1, 1-94.

Carraro, A., Fabbri, P., Giaretta, A., Peruzzo, L., Tateo, F., & Tellini, F. (2015). Effects of redox conditions on the control of arsenic mobility in shallow alluvial aquifers on the Venetian Plain (Italy). Science of The Total Environment, 532, 581–594. https://doi.org/10.1016/j.scitotenv.2015.06.003

Carraro, A., Fabbri, P., Giaretta, A., Peruzzo, L., Tateo, F., & Tellini, F. (2013). Arsenic anomalies in shallow Venetian Plain (Northeast Italy) groundwater. Environmental Earth Sciences, 70(7), 3067–3084. https://doi.org/10.1007/s12665-013-2367-2

Council Directive 80/778/EEC (1980). Council Directive on 15 July 1980 relating to the quality of water intended for human consumption. Official Journal of the European Communities L329/11.

Council Directive 98/83/EC (1998). On the quality of water intended for human consumption. Official Journal of the European Communities L330.

Cubadda, F., Jackson, B. P., Cottingham, K. L., Van Horne, Y. O., & Kurzius-Spencer, M. (2017). Human exposure to dietary inorganic arsenic and other arsenic species: State of knowledge, gaps and uncertainties. Science of The Total Environment, 579, 1228–1239. https://doi.org/10.1016/j.scitotenv.2016.11.108

D’Ippoliti, D., Santelli, E., De Sario, M., Scortichini, M., Davoli, M., & Michelozzi, P. (2015). Arsenic in Drinking Water and Mortality for Cancer and Chronic Diseases in Central Italy, 1990-2010. PLOS ONE, 10(9), e0138182. https://doi.org/10.1371/journal.pone.0138182

Dalla Libera, N., Fabbri, P., Mason, L., Piccinini, L., & Pola, M. (2018). A local natural background level concept to improve the natural background level: a case study on the drainage basin of the Venetian Lagoon in Northeastern Italy. Environmental Earth Sciences, 77(13), 1–15. https://doi.org/10.1007/s12665-018-7672-3

Dalla Libera, N., Pedretti, D., Tateo, F., Mason, L., Piccinini, L., & Fabbri, P. (2020). Conceptual Model of Arsenic Mobility in the Shallow Alluvial Aquifers Near Venice (Italy) Elucidated Through Machine Learning and Geochemical Modeling. Water Resources Research, 56(9), 1–20. https://doi.org/10.1029/2019WR026234

DGR 1352 (2018). Messa in sicurezza delle fonti idropotabili contaminate da sostanze perfluoro - alchiliche (PFAS). Modello Strutturale degli Acquedotti del Veneto. Assegnazione alla Società Veneto Acque S.p.A. della progettazione e dell’esecuzione della Condotta di adduzione primaria Piazzola sul Brenta (PD) - Brendola (VI) e del coordinamento tecnico degli ulteriori interventi. Messa in sicurezza delle fonti idropotabili contaminate da sostanze perfluoro - alchiliche (PFAS). Modello Strutturale degli Acquedotti del Veneto. Assegnazione alla Società Veneto Acque S.p.A. della progettazione e dell’esecuzione della Condotta di adduzione primaria Piazzola sul Brenta (PD) - Brendola (VI) e del coordinamento tecnico degli ulteriori interventi. Securing drinking water sources contaminated by perfluoro-alkyl substances (PFAS). Structural Model of the Veneto Aqueducts. Assignment to Veneto Acque S.p.A. the design and execution of the Piazzola sul Brenta (PD) - Brendola (VI) primary supply pipeline and the technical coordination of further interventions. Securing drinking water sources contaminated by perfluoro-alkyl substances (PFAS). Structural Model of the Veneto Aqueducts. Assignment to Veneto Acque S.p.A. of the design and execution of the Piazzola sul Brenta (PD) - Brendola (VI) primary supply pipeline and the technical coordination of further interventions. Bollettino Ufficiale della Regione del Veneto, Bur n. 99, 02/10/2018.

Dove, P.M., De Yoreo, J.J. & Weiner, S. (Eds.), (2003). Biologically induced mineralization by bacteria. Review in Mineralogy & Geochemistry, 54.

Drahota, P., Mikutta, C., Falteisek, L., Duchoslav, V., & Klementová, M. (2017). Biologically induced formation of realgar deposits in soil. Geochimica et Cosmochimica Acta, 218, 237–256. https://doi.org/10.1016/j.gca.2017.09.023

Falteisek, L., Duchoslav, V., & Drahota, P. (2019). Realgar (As4S4) bioprecipitation in microcosm fed by a natural groundwater and organic matter. Environmental Science and Pollution Research, 26(18), 18766–18776. https://doi.org/10.1007/s11356-019-05237-4

Gustafsson, J.P., 2013. Visual MINTEQ, ver. 3.0 Available 2013 at:. http://www2.lwr.kth.se/English/Oursoftware/vminteq/.

Lafuente, Bc., Downs, R.T., Yang, H. & Stone, N. (2015). The power of databases: the RRUFF project. In: Highlights in Mineralogical Crystallography, T Armbruster and R M Danisi, eds. Berlin, Germany, W. De Gruyter, pp 1-30, https://rruff.info.

Mastrantonio, M., Bai, E., Uccelli, R., Cordiano, V., Screpanti, A., & Crosignani, P. (2018). Drinking water contamination from perfluoroalkyl substances (PFAS): an ecological mortality study in the Veneto Region, Italy. European Journal of Public Health, 28(1), 180–185. https://doi.org/10.1093/eurpub/ckx066

Nordstrom DK. (2002). Worldwide occurrences of arsenic in ground water. Science, 296, 2143–2145.

O’Day, P. A. (2006). Chemistry and Mineralogy of Arsenic. Elements, 2(2), 77–83. https://doi.org/10.2113/gselements.2.2.77

Rossato, S., Carraro, A., Monegato, G., Mozzi, P., & Tateo, F. (2018). Glacial dynamics in pre-Alpine narrow valleys during the Last Glacial Maximum inferred by lowland fluvial records (northeast Italy). Earth Surface Dynamics, 6(3), 809–828. https://doi.org/10.5194/esurf-6-809-2018

WHO (2016). Keeping our water clean: the case of water contamination in the Veneto Region, Italy. Https://Www.Euro.Who.Int/En/Publications/Abstracts/Keeping-Our-Water-Clean-the-Case-of-Water-Contamination-in-the-Veneto-Region,-Italy-2017, 72.

Zavatti, A., Attramini, D., Bonazzi, A., Boraldi, V., Malagò, R., Martinelli, G., Naldi, S., Patrizi, G., Pezzera, G., Vandini, W., Venturini, L. & Zuppi, G.M. (1995). La presenza di arsenico nelle acque sotterranee della pianura padana: evidenze ambientali e ipotesi geochimiche. The presence of arsenic in the groundwater of the Po Valley: environmental evidence and geochemical hypotheses. Quaderni di Geologia Applicata, supp. vol. 2, 301-326.

Zuzolo, D., Cicchella, D., Demetriades, A., Birke, M., Albanese, S., Dinelli, E., Lima, A., Valera, P., & De Vivo, B. (2020). Arsenic: Geochemical distribution and age-related health risk in Italy. Environmental Research, 182, 109076. https://doi.org/10.1016/j.envres.2019.109076

Tateo, F., Fabbri, P., Dalconi, M. C., & Peruzzo, L. (2024). Arsenic in the groundwater aquifers of the Venetian Plain: geochemical modelling and occurrence of As-sulfides minerals, a review of data from the medio Brenta domain (Italy). Acque Sotterranee - Italian Journal of Groundwater, 13(1), 47–53. https://doi.org/10.7343/as-2024-724

Downloads

Download data is not yet available.

Citations