Mapping saltwater intrusion via Electromagnetic Induction for planning a Managed Aquifer Recharge facility in Maltese island


Submitted: 15 December 2023
Accepted: 4 March 2024
Published: 28 March 2024
Abstract Views: 695
PDF: 319
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

In coastal areas, saltwater intrusion causes a depletion of the resource by reducing potable and irrigation freshwater supplies and causing severe deterioration of groundwater quality. This trend is observed in Pwales Valley, in the northern part of Malta, where the management of water resources plays a crucial role for the environmental sustainability of the area, given the importance of intensive agricultural activity along this valley. In order to tackle such a phenomenon, actions or adaptation measures against climate change are strongly required. For example, managed aquifer recharge (MAR) is an increasingly important water management strategy to maintain, enhance, and secure stressed groundwater systems and to protect and improve water quality. To accurately plan a MAR scheme, it is crucial to define a hydrogeological model of the studied area with the use of traditional hydrogeological measurements and innovative unconventional techniques. In recent years, electromagnetic induction measurements based on the induction of EM fields have been increasingly used for investigating saltwater intrusion dynamics due to their high sensitivity to salinity. In the study area of Pwales Valley, a managed aquifer recharge scheme is being planned, and, for this aim, a hydrogeological model has been developed through an electromagnetic induction survey. More than 20,000 apparent electrical conductivity (ECa) data points were collected to generate a quasi-3D high-resolution model of the electrical conductivity of the Pwales Valley. The results highlighted the spatial extension of the tongue-shape salt water intrusion from east to west along the valley, as well as some geological-hydrogeological peculiarities such as the thickness of the salt wedge and the irregular top surface of the bottom impermeable layer, otherwise undetectable with other direct techniques at the field scale resolution. The approach was confirmed to be a useful tool for effective hydrogeological characterization, essential for planning adaptation measures to a changing climate, such as the implementation of a managed aquifer recharge scheme.


Alfarrah, N., & Walraevens, K. (2018). Groundwater overexploitation and seawater intrusion in coastal areas of arid and semi-arid regions. Water, 10, 143. https://doi.org/10.3390/w10020143 DOI: https://doi.org/10.3390/w10020143

Aslam, R.A., Shrestha, S., & Pandey, V.P. (2018). Groundwater vulnerability to climate change: A review of the assessment methodology. Science of the Total Environment, 612, 853-875. https://doi.org/10.1016/j.scitotenv.2017.08.237 DOI: https://doi.org/10.1016/j.scitotenv.2017.08.237

Bellafiore, D., Ferrarin, C., Maicu, F., Manfè, G., Lorenzetti, G., Umgiesser, G., Zaggia, L., & Valle Levinson A. (2021). Saltwater intrusion in a Mediterranean Delta under a changing climate. Journal of Geophysical Research: Oceans, 126, e2020JC016437. https://doi.org/10.1029/2020JC016437 DOI: https://doi.org/10.1029/2020JC016437

Boaga, J., Ghinassi, M., D’Alpaos, A., Deidda, G. P., Rodriguez, G., & Cassiani, G. (2018). Geophysical investigations unravel the vestiges of ancient meandering channels and their dynamics in tidal landscapes. Scientific Reports, 8, 1708. https://doi.org/10.1038/s41598-018-20061-5 DOI: https://doi.org/10.1038/s41598-018-20061-5

Brosten, T.R., Day-Lewis, F.D., Schultz, G.M., Curtis, G.P. and Lane Jr, J.W. (2011). Inversion of multi-frequency electromagnetic induction data for 3D characterization of hydraulic conductivity. Journal of Applied Geophysics, 73(4), pp.323-335. DOI: https://doi.org/10.1016/j.jappgeo.2011.02.004

Buselli, G., Davis, G.B., Barber, C., Height, M.I. and Howard, S.H.D., (1992). The application of electromagnetic and electrical methods to groundwater problems in urban environments. Exploration Geophysics, 23(4), pp.543-555. DOI: https://doi.org/10.1071/EG992543

Brogi, C., Huisman, J.A., Pätzold, S., Von Hebel, C., Weihermüller, L., Kaufmann, M.S., Van Der Kruk, J. and Vereecken, H., 2019. Largescale soil mapping using multi-configuration EMI and supervised image classification. Geoderma, 335, pp.133-148. DOI: https://doi.org/10.1016/j.geoderma.2018.08.001

Cassiani, G., Ursino, N., Deiana, R., Vignoli, G., Boaga, J., Rossi, M., Perri, M. T., Blaschek, M., Duttmann, R., Meyer, S., Ludwig, R., Soddu, A., Dietrich, P., & Werban, U. (2012). Noninvasive monitoring of soil static characteristics and dynamic states: a case study highlighting vegetation effects on agricultural land. Vadose Zone Journal, 11(13). https://doi.org/10.2136/vzj2011.0195 DOI: https://doi.org/10.2136/vzj2011.0195

Christiansen, A.V., Pedersen, J.B., Auken, E., Søe, N.E., Holst, M.K. and Kristiansen, S.M. (2016). Improved geoarchaeological mapping with electromagnetic induction instruments from dedicated processing and inversion. Remote Sensing, 8(12), p.1022. DOI: https://doi.org/10.3390/rs8121022

Colombani, N., Osti, A., Volta, G., & Mastrocicco, M. (2016). Impact of climate change on salinization of coastal water resources. Water Resources Management, 30, 2483–2496. https://doi.org/10.1007/s11269-016-1292-z DOI: https://doi.org/10.1007/s11269-016-1292-z

Costall, A. R., Harris, B. D., Teo, B., Schaa, R., Wagner, F. M. & Pigois, J. P. (2020). Groundwater throughflow and seawater intrusion in high quality coastal Aquifers. Scientific Reports, 10, 9866. https://doi.org/10.1038/s41598-020-66516-6 DOI: https://doi.org/10.1038/s41598-020-66516-6

De Carlo, L., Vivaldi, G.A., & Caputo, M.C. (2022). Electromagnetic Induction measurements for investigating soil salinization caused by saline reclaimed water. Atmosphere, 13, 73. https://doi.org/10.3390/ atmos13010073 DOI: https://doi.org/10.3390/atmos13010073

DeGroot-Hedlin C. & Constable S. C. (1990). Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data. Geophysics, 55, 1613-1624. https://doi.org/10.1190/1.1442813 DOI: https://doi.org/10.1190/1.1442813

Deidda, G. P., De Carlo, L., Caputo, M. C., & Cassiani, G. (2022). Frequency domain electromagnetic induction imaging: An effective method to see inside a capped landfill. Waste Management, 144, 29-40. https://doi.org/10.1016/j.wasman.2022.03.007 DOI: https://doi.org/10.1016/j.wasman.2022.03.007

Demichele, F., Micallef, F., Portoghese, I., Mamo, J. A., Sapiano, M., Schembri, M., Schüth, C. (2023). Determining aquifer hydrogeological parameters in coastal aquifers from tidal attenuation analysis, case Study: the Malta Mean Sea Level Aquifer system. Water, 15, 177. https:// doi.org/10.3390/w15010177 DOI: https://doi.org/10.3390/w15010177

De Smedt, P., Van Meirvenne, M., Saey, T., Baldwin, E., Gaffney, C. and Gaffney, V., (2014). Unveiling the prehistoric landscape at Stonehenge through multi-receiver EMI. Journal of Archaeological Science, 50, pp.16-23. DOI: https://doi.org/10.1016/j.jas.2014.06.020

Dillon, P., Stuyfzand, P., Grischek, T., Lluria, M., Pyne, R. D. G., Jain, R. C., Bear, J., Schwarz, J., Wang, W., Fernandez, E., Stefan, C., Pettenati, M., van der Gun, J., Sprenger, C., Massmann, G., Scanlon, B. R., Xanke, J., Jokela, P., Zheng, Y., Rossetto, R., Shamrukh, M., Pavelic, P., Murray, E., Ross, A., Bonilla Valverde, J. P., Palma Nava, A., Ansems, N., Posavec, K., Ha, K., Martin, R. & Sapiano, M. (2019). Sixty years of global progress in managed aquifer recharge. Hydrogeological Journal, 27, 1–30. https://doi.org/10.1007/s10040-018-1841-z DOI: https://doi.org/10.1007/s10040-018-1841-z

Dragonetti, G., Comegna, A., Ajeel, A., Deidda, G. P., Lamaddalena, N., Rodriguez, G., Vignoli, G., & Coppola, A. (2018). Calibrating electromagnetic induction conductivities with time-domain reflectometry measurements. Hydrology and Earth System Sciences, 22, 1509-1523. https://doi.org/10.5194/hess-2017-288 DOI: https://doi.org/10.5194/hess-22-1509-2018

EMTOMO LDA (2023). EM4Soil-v4.5 – Guide. A program for 1D Laterally Constrained Inversion. 55 pp

Ferguson, G., & Gleeson, T. (2012). Vulnerability of coastal aquifers to groundwater use and climate change. Nature Climate Change, 2, 342-345. https://doi.org/10.1038/nclimate1413 DOI: https://doi.org/10.1038/nclimate1413

Frollini, E., Parrone, D., Ghergo, S., Masciale, R., Passarella, G., Pennisi, M., Salvadori, M., & Preziosi, E. (2022). An integrated approach for investigating the salinity evolution in a Mediterranean coastal karst aquifer. Water, 14, 1725. https://doi.org/10.3390/w14111725 DOI: https://doi.org/10.3390/w14111725

Guillemoteau, J., Dousteyssier, B., Heinig, L., Tchana, S.G.N. and Tronicke, J., 2023. Evaluation of the 3-D Multichannel Deconvolution Method for the Case of Low S/N Inphase Data Collected With Loop–Loop FD-EMI Sensors. IEEE Transactions on Geoscience and Remote Sensing, 61, pp.1-9. DOI: https://doi.org/10.1109/TGRS.2023.3336528

Iyalomhe, F., Rizzi, J., Pasini, S., Torresan, S., Critto, A., & Marcomini, A. (2015) Regional risk assessment for climate change impacts on coastal aquifers. Science of The Total Environment, 537, 100-114. https://doi.org/10.1016/j.scitotenv.2015.06.111 DOI: https://doi.org/10.1016/j.scitotenv.2015.06.111

Jadoon, K.Z., Moghadas, D., Jadoon, A., Missimer, T.M., Al- Mashharawi, S.K. and McCabe, M.F. (2015). Estimation of soil salinity in a drip irrigation system by using joint inversion of multicoil electromagnetic induction measurements. Water Resources Research, 51(5), pp.3490-3504. DOI: https://doi.org/10.1002/2014WR016245

Jansen, J., Haddad, B., Fassbender, W. and Jurcek, P. (1992). Frequency domain electromagnetic induction sounding surveys for landfill site characterization studies. Groundwater Monitoring & Remediation, 12(4), pp.103-109. DOI: https://doi.org/10.1111/j.1745-6592.1992.tb00068.x

Kaufmann, M.S., von Hebel, C., Weihermüller, L., Baumecker, M., Döring, T., Schweitzer, K., Hobley, E., Bauke, S.L., Amelung, W., Vereecken, H. and van der Kruk, J., (2020). Effect of fertilizers and irrigation on multi configuration electromagnetic induction measurements. Soil use and management, 36(1), pp.104-116. DOI: https://doi.org/10.1111/sum.12530

Keller, G. V. & Frischknecht, F. C. (1996). Electrical methods in geophysical prospecting. Pergamon Press, Inc., 513 pp.

Ketabchi, H., Mahmoodzadeh, D., Ataie-Ashtiani, B., & Simmons, C. T. (2016). Sea-level rise impacts on sea water intrusion in coastal aquifers: Review and integration. Journal of Hydrology, 535, 235–255. https://doi.org/10.1016/j.jhydrol.2016.01.083 DOI: https://doi.org/10.1016/j.jhydrol.2016.01.083

Lascano, E., Martinelli, P., & Osella, A. (2006). EMI data from an archaeological resistive target revisited. Near Surface Geophysics, 4(6), 395-400. https://doi.org/10.3997/1873-0604.2006013 DOI: https://doi.org/10.3997/1873-0604.2006013

Lotti, F., Borsi, I., Guastaldi, E., Barbagli, A., Basile, P., Favaro, L., Mallia, A., Xuereb, R., Schembri, M., Mamo, J. A., & Sapiano, M. (2021). Numerically enhanced conceptual modelling (NECoM) applied to the Malta Mean Sea Level Aquifer. Hydrogeology Journal, 29, 1517-1537. https://doi.org/10.1007/s10040-021-02330-2 DOI: https://doi.org/10.1007/s10040-021-02330-2

Lu, J., Zhang, Y., Shi, H., & Lv, X. (2022). Coastal vulnerability modelling and social vulnerability assessment under anthropogenic impacts. Frontiers in Marine Science, 9, 1015781. https://doi.org/10.3389/fmars.2022.1015781 DOI: https://doi.org/10.3389/fmars.2022.1015781

Martinelli, P., & Duplaa, M. C. (2008). Laterally filtered 1D inversions of small-loop, frequency domain EMI data from a chemical waste site. Geophysics, 73(4), F143–F149. https://doi.org/10.1190/1.2917197 DOI: https://doi.org/10.1190/1.2917197

Masciale, R., Amalfitano, S., Frollini, E., Ghergo, S., Melita, M., Parrone, D., Preziosi, E., Vurro, M., Zoppini, A., & Passarella, G. (2021). Assessing natural background levels in the groundwater bodies of the Apulia Region (Southern Italy). Water, 13, 958. https://doi.org/10.3390/w13070958 DOI: https://doi.org/10.3390/w13070958

Masciopinto, C. (2013). Management of aquifer recharge in Lebanon by removing seawater intrusion from coastal aquifers. Journal of Environmental Management, 130, 306-312. https://doi: 10.1016/j.jenvman.2013.08.021 DOI: https://doi.org/10.1016/j.jenvman.2013.08.021

Masciopinto, C., & Liso, I. S. (2016). Assessment of the impact of sealevel rise due to climate change on coastal groundwater discharge. Science of The Total Environment, 569, 672-680. doi: 10.1016/j.scitotenv.2016.06.183 DOI: https://doi.org/10.1016/j.scitotenv.2016.06.183

McLachlan, P., Blanchy, G., Chambers, J., Sorensen, J., Uhlemann, S., Wilkinson, P. and Binley, A., (2021). The application of electromagnetic induction methods to reveal the hydrogeological structure of a riparian wetland. Water Resources Research, 57(6), p.e2020WR029221. DOI: https://doi.org/10.1029/2020WR029221

McNeill, J.D. (1980). Electromagnetic terrain conductivity measurement at low induction numbers: Geonics, Technical Note TN-6. Available at http://www.geonics.com/pdfs/technicalnotes/tn6.pdf

Minsley, B.J., Smith, B.D., Hammack, R., Sams, J.I. and Veloski, G., 2012. Calibration and filtering strategies for frequency domain electromagnetic data. Journal of Applied Geophysics, 80, pp.56-66. DOI: https://doi.org/10.1016/j.jappgeo.2012.01.008

Monteiro Santos, F.A., (2004). 1-D laterally constrained inversion of EM34 profiling data. Journal of Applied Geophysics, 56, 123-134. https://doi:10.1016/j.jappgeo.2004.04.005 DOI: https://doi.org/10.1016/j.jappgeo.2004.04.005

Moore, W. S., & Joye S. B. (2021). Saltwater intrusion and submarine groundwater discharge: acceleration of biogeochemical reactions in changing coastal aquifers. Frontiers in Earth Science, 9, 600710. https://doi: 10.3389/feart.2021.600710 DOI: https://doi.org/10.3389/feart.2021.600710

Osella, A., de la Vega, M., & Lascano, E. (2005). 3D electrical imaging of an archaeological site using electrical and electromagnetic methods. Geophysics, 70(4), G101–G107. https://doi.org/10.1190/1.1993727 DOI: https://doi.org/10.1190/1.1993727

Page, D., Bekele, E., Vanderzalm, J., & Sidhu, J. (2018). Managed Aquifer Recharge (MAR) in sustainable urban water management. Water, 10, 239. https://doi.org/10.3390/w10030239 DOI: https://doi.org/10.3390/w10030239

Polemio, M., Sapiano, M., Santaloia, F., Basso, A., Dragone, V, De Giorgio, G., Limoni, P., Zuffianò, L. E., Mangion, J., & Schembri, M. (2019). A hydrogeological study to support the optimized management of the main sea level aquifer of the island of Malta. Rendiconti Online della Società Geologica Italiana, 47, 85-89. https://doi.org/10.3301/ROL.2019.16 DOI: https://doi.org/10.3301/ROL.2019.16

Post, V.E.A., & Werner A. D. (2017). Coastal aquifers: Scientific advances in the face of global environmental challenges. Journal of Hydrology, 551, 1-3. https://doi.org/10.1016/j.jhydrol.2017.04.046 DOI: https://doi.org/10.1016/j.jhydrol.2017.04.046

Qin, R., Wu, Y., Xu, Z., Xie, D., & Zhang, C. (2013). Assessing the impact of natural and anthropogenic activities on groundwater quality in coastal alluvial aquifers of the lower Liaohe River Plain, NE China. Applied Geochemistry, 31, 142-158. https://doi.org/10.1016/j.apgeochem.2013.01.001 DOI: https://doi.org/10.1016/j.apgeochem.2013.01.001

Revil, A., Karaoulis, M., Johnson, T. and Kemna, A. (2012). Some lowfrequency electrical methods for subsurface characterization and monitoring in hydrogeology. Hydrogeology Journal, 20(4), p.617. DOI: https://doi.org/10.1007/s10040-011-0819-x

Ringleb, J., Sallwey, J., & Stefan, C. (2016). Assessment of Managed Aquifer Recharge through Modeling-A Review. Water, 8, 579. https://doi.org/10.3390/w8120579 DOI: https://doi.org/10.3390/w8120579

Robinson, D.A., Binley, A., Crook, N., Day-Lewis, F.D., Ferré, T.P.A., Grauch, V.J.S., Knight, R., Knoll, M., Lakshmi, V., Miller, R. and Nyquist, J. (2008). Advancing process-based watershed hydrological research using near-surface geophysics: A vision for, and review of, electrical and magnetic geophysical methods. Hydrological Processes: An International Journal, 22(18), pp.3604-3635. DOI: https://doi.org/10.1002/hyp.6963

Sasaki, Y. (1989). Two-dimensional joint inversion of magnetotelluric and dipole-dipole resistivity data. Geophysics, 54, 254-262. https://doi.org/10.1190/1.1442649 DOI: https://doi.org/10.1190/1.1442649

Tarolli, P., Luo, J., Straffelini, E., Liou, Y. A., Nguyen, K. A., Laurenti R., Masin, R., & D’Agostino, V. (2023). Saltwater intrusion and climate change impact on coastal agriculture. PLOS Water, 2(4), e0000121. https://doi.org/10.1371/journal.pwat.0000121 DOI: https://doi.org/10.1371/journal.pwat.0000121

Tezkan, B. (1999). A review of environmental applications of quasistationary electromagnetic techniques. Surveys in Geophysics, 20, pp.279-308. DOI: https://doi.org/10.1023/A:1006669218545

Tully, K. L., Weissman, D., Jesse Wyner, W., Miller, J., & Jordan, T. (2019). Soils in transition: saltwater intrusion alters soil chemistry in agricultural fields. Biogeochemistry, 142, 339-56. https://www.jstor.org/stable/48701385 DOI: https://doi.org/10.1007/s10533-019-00538-9

von Hebel, C., Rudolph, S., Mester, A., Huisman, J.A., Kumbhar, P., Vereecken, H. and van der Kruk, J. (2014). Three-dimensional imaging of subsurface structural patterns using quantitative largescale multiconfiguration electromagnetic induction data. Water Resources Research, 50(3), pp.2732-2748. DOI: https://doi.org/10.1002/2013WR014864

von Hebel, C., Reynaert, S., Pauly, K., Janssens, P., Piccard, I., Vanderborght, J., van der Kruk, J., Vereecken, H. and Garré, S. (2021). Toward high-resolution agronomic soil information and management zones delineated by ground-based electromagnetic induction and aerial drone data. Vadose zone journal, 20(4), p.e20099. DOI: https://doi.org/10.1002/vzj2.20099

Werner, A. D., & Simmons C. T. (2009). Impact of sea-level rise on sea water intrusion in coastal aquifers. Groundwater, 47, 197-204. https://doi.org/10.1111/j.1745-6584.2008.00535.x DOI: https://doi.org/10.1111/j.1745-6584.2008.00535.x

Yao, R., & Yang, J. (2010). Quantitative evaluation of soil salinity and its spatial distribution using electromagnetic induction method. Agricultural Water Management, 97(12), 1961-1970. https://doi.org/10.1016/j.agwat.2010.02.001 DOI: https://doi.org/10.1016/j.agwat.2010.02.001

Zaccaria, D., Passarella, G., D’Agostino, D., Giordano, R., & Solis, S. S. (2016). Risk assessment of aquifer salinization in a large-scale coastal irrigation scheme, Italy. CLEAN–Soil, Air, Water, 44(4), 371-382. https://doi.org/10.1002/clen.201400396 DOI: https://doi.org/10.1002/clen.201400396

De Carlo, L., Turturro, A. C., Caputo, M. C., Sapiano, M., Mamo, J., Balzan, O., Galea, L., & Schembri, M. (2024). Mapping saltwater intrusion via Electromagnetic Induction for planning a Managed Aquifer Recharge facility in Maltese island. Acque Sotterranee - Italian Journal of Groundwater, 13(1), 7–15. https://doi.org/10.7343/as-2024-743

Downloads

Download data is not yet available.

Citations