Spatio-temporal variability of groundwater hydrochemical features in different hydrogeological settings in Piedmont and Campania regions (Italy), a comparative study
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Authors
- Daniele Cocca Dipartimento di Scienze della Terra, Università degli Studi di Torino, Italy. https://orcid.org/0000-0002-2714-0463
- Stefania Stevenazzi Dipartimento di Ingegneria Civile, Edile ed Ambientale, Università degli Studi di Napoli Federico II, Italy. https://orcid.org/0000-0003-2855-9829
- Daniela Ducci Dipartimento di Ingegneria Civile, Edile ed Ambientale, Università degli Studi di Napoli Federico II, Italy. https://orcid.org/0000-0001-8245-2403
- Domenico Antonio De Luca Dipartimento di Scienze della Terra, Università degli Studi di Torino, Italy.
- Manuela Lasagna Dipartimento di Scienze della Terra, Università degli Studi di Torino, Italy. https://orcid.org/0000-0003-3464-2370
The spatio-temporal evolution of groundwater chemistry has seen an increase in interest over the last decade at a global level. Identifying and discerning the sources of the natural and anthropogenic compounds and the actual hydrochemical processes, as well as their evolution, is essential to support a sustainable planning for managing and protecting groundwater resources at the present time and in the future. The main objective of this study is the comparison of two study areas in Italy (Piedmont and Campania Regions), different in their geographical and geological contexts and climate conditions, to highlight the similarities and differences in the hydrogeochemical behavior in space and time. Three main ions were considered (NO3 –, SO4 2–, Na+) and analyzed to identify the sources and hydrochemical processes responsible for their spatial distribution in the 2015-2020 period and evaluate the existence and the potential causes of trends in their concentration for the 2000-2020 period. Results highlight specific factors and processes distinguishing the spatial distribution and temporal variability of ion concentrations in Piedmont and Campania study areas. These processes are mainly related to the geological and geographical features of the study areas. In both areas, a significant influence of anthropogenic pressures emerges for both spatial and temporal evolutions, with remarkably increasing trends in NO3 – concentrations. In conclusion, some factors and processes emerge as site-specific, mainly related to the geological aspects and natural hydrochemical processes, whereas others are in common (i.e., anthropogenic impacts); thus, reinforcing the advantage of making comparative studies.
Aiuppa, A., Avino, R., Brusca, L., Caliro, S., Chiodini, G., D’Alessandro, W., Favara, R., Federico, C., Ginevra, W., Inguaggiato, S., Longo, M., Pecoraino, G., & Valenza, M. (2006). Mineral control of arsenic content in thermal waters from volcano-hosted hydrothermal systems: Insights from island of Ischia and Phlegrean Fields (Campanian Volcanic Province, Italy). Chemical Geology, 229(4), 313–330. https://doi.org/10.1016/j.chemgeo.2005.11.004 DOI: https://doi.org/10.1016/j.chemgeo.2005.11.004
Allocca, V., Celico, F., Celico, P., De Vita, P., Fabbrocino, S., Mattia, C., Monacelli, G., Musilli, I., Piscopo, V., Scalise, A. R., Summa, G., & Tranfaglia, G. (2007). Hydrogeological Map of Southern Italy. Istituto Poligrafico e Zecca dello Stato, Roma
Amorosi, A., Pacifico, A., Rossi, V., & Ruberti, D. (2012). Late Quaternary incision and deposition in an active volcanic setting: The Volturno valley fill, southern Italy. Sedimentary Geology, The 2011 Tohoku-oki tsunami, 282, 307–320. https://doi.org/10.1016/j.sedgeo.2012.10.003 DOI: https://doi.org/10.1016/j.sedgeo.2012.10.003
Armando, E., Civita, M., Olivero, G., Sambuelli, L., & Vigna, B. (1988). Identificazione di una struttura idrogeologica sepolta alimentante una notevole fonte di approvvigionamento idrico (Sorgenti di Beinette-Cuneo). Bollettino della Associazione Mineraria Subalpina. Anno XXV, n. 1 Marzo 1988.
Balestra, V., Fiorucci, A., & Vigna, B. (2022). Study of the Trends of Chemical–Physical Parameters in Different Karst Aquifers: Some Examples from Italian Alps. Water, 14(3), 441. https://doi.org/10.3390/w14030441 DOI: https://doi.org/10.3390/w14030441
Baran, N., Gourcy, L., Lopez, B., Bourgine B., & Mardhel, V.(2009). Transfert des nitrates a l’échelle du bassin Loire-Bretagne. Phase 1: temps de transfert et typologie des aquifères. Rapport BRGM RP-54830-FR, 105 p.
Barbero, T., De Luca, D. A., Forno, M. G., Masciocco, L., & Massazza, G. (2007). Stratigraphic revision of the subsoil of the Southern Turin Plain for Hydrogeologic Purposes. Mem. Descr. Carta Geol. D’It., LXXVI, 9–16
Batlle Aguilar, J., Orban, P., Dassargues, A., & Brouyère, S. (2007). Identification of groundwater quality trends in a chalk aquifer threatened by intensive agriculture in Belgium. Hydrogeology Journal, 15, 1615–1627. https://doi.org/10.1007/s10040-007-0204-y DOI: https://doi.org/10.1007/s10040-007-0204-y
Becher, J., Englisch, C., Griebler, C., & Bayer, P. (2022). Groundwater fauna downtown – Drivers, impacts and implications for subsurface ecosystems in urban areas. Journal of Contaminant Hydrology, 248, 104021. https://doi.org/10.1016/j.jconhyd.2022.104021 DOI: https://doi.org/10.1016/j.jconhyd.2022.104021
Braca, G., Bussettini, M., Lastoria, B., & Mariani, S. (2013). Linee Guida per l'analisi e l'elaborazione Statistica Di Base Delle Serie Storiche Di Dati Idrologici. ISPRA, Manuali e Linee Guida 84/13. ISBN 978-88-448-0584-5. Available at: https://www.isprambiente.gov.it/it/pubblicazioni/manuali-e-linee-guida/linee-guida-per-lanalsi-e-lelaborazione-statistica-di-base-delle-serie-storiche-di-dati-idrologici – last access 14/01/2024
Busico, G., Buffardi, C., Ntona, M. M., Vigliotti, M., Colombani, N., Mastrocicco, M., & Ruberti, D. (2021). Actual and Forecasted Vulnerability Assessment to Seawater Intrusion via GALDIT-SUSI in the Volturno River Mouth (Italy). Remote Sensing, 13(18), 3632. https://doi.org/10.3390/rs13183632 DOI: https://doi.org/10.3390/rs13183632
Busico, G., Cuoco, E., Kazakis, N., Colombani, N., Mastrocicco, M., Tedesco, D., & Voudouris, K. (2018). Multivariate statistical analysis to characterize/discriminate between anthropogenic and geogenic trace elements occurrence in the Campania Plain, Southern Italy. Environmental Pollution, 234, 260–269. https://doi.org/10.1016/j.envpol.2017.11.053 DOI: https://doi.org/10.1016/j.envpol.2017.11.053
Civita, M. V., Fiorucci, A., & Vigna, B. (2007). The spatial-temporal variability of nitrates in a section of the Cuneo Plain (North West Italy). American Journal of Environmental Sciences, 3(3), 111–116, ISSN 1553-345X DOI: https://doi.org/10.3844/ajessp.2007.111.116
Civita, M. V., Vigna, B., De Maio, M., Fiorucci, A., Pizzo, S., Gandolfo, M., Banzato, C., Menegatti, S., Offi, M., & Moitre, B. (2011). Le acque sotterranee della pianura e della collina cuneese. Scribo ISBN 978-8-89065-294-3
CLC (2000). CORINE Land Cover 2000 vector data for the Italian territory. Available at: https://groupware.sinanet.isprambiente.it/uso-copertura-e-consumo-di-suolo/library/copertura-del-suolo/corine-land-cover - last accessed 02/01/2024
CLC (2018). CORINE Land Cover 2018 vector data for the Italian territory. Available at: https://groupware.sinanet.isprambiente.it/uso-copertura-e-consumo-di-suolo/library/copertura-del-suolo/corine-land-cover - last accessed 02/01/2024
Cocca, D., Lasagna, M., Marchina, C., Santillan Quiroga, L. M., De Luca, D. A. (2023a). Chemical and isotopic composition of precipitation in the Piedmont Po Plain (NW Italy): preliminary evaluation of impacts on the groundwater quality, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-2088, https://doi.org/10.5194/egusphere-egu23-2088 DOI: https://doi.org/10.5194/egusphere-egu23-2088
Cocca, D., Lasagna, M., Marchina, C., Brombin, V., Santillan Quiroga, L. M., De Luca, D. A. (2023b). Assessment of the groundwater recharge processes of a shallow and deep aquifer system (Maggiore Valley, Northwest Italy): a hydrogeochemical and isotopic approach. Hydrogeology Journal, https://doi.org/10.1007/s10040-023-02727-1 DOI: https://doi.org/10.1007/s10040-023-02727-1
Cocca, D., Lasagna, M., Destefanis, E., Bottasso, C., & De Luca, D.A. (2024a). Human health risk assessment of heavy metals and nitrates associated with oral and dermal groundwater exposure: the Poirino Plateau case study (NW Italy). Sustainability, 16, 222. https://doi.org/10.3390/su16010222 DOI: https://doi.org/10.3390/su16010222
Cocca, D., Debernardi, L., Destefanis, E., Lasagna, M., & De Luca, D.A. (2024b). Hydrogeochemistry of the shallow aquifer in the western Po Plain (Piedmont, Italy): spatial and temporal variability. Journal of Maps. https://doi.org/10.1080/17445647.2024.2329164 DOI: https://doi.org/10.1080/17445647.2024.2329164
Corniello, A., 1996. Lineamenti idrogeochimici dei principali massicci carbonatici della Campania. Memorie della Società Geologica Italiana, 51, 333–342.
Corniello, A., Cardellicchio, N., Cavuoto, G., Cuoco, E., Ducci, D., Minissale, A., Mussi, M., Petruccione, E., Pelosi, N., Rizzo, E., Polemico, M., Tamburino, S., Tedesco, D., Tiano, P., & Iorio, M. (2015). Hydrogeological Characterization of a Geothermal system: The case of the Thermo-mineral area of Mondragone (Campania, Italy). International Journal of Environmental Research, 9(2), 523–534. https://doi.org/10.22059/ijer.2015.926
Corniello, A., & Ducci, D. (2014). Hydrogeochemical characterization of the main aquifer of the “Litorale Domizio-Agro Aversano NIPS” (Campania—Southern Italy). Journal of Geochemical Exploration, 137, 1–10. https://doi.org/10.1016/j.gexplo.2013.10.016 DOI: https://doi.org/10.1016/j.gexplo.2013.10.016
Corniello, A., Ducci, D., Trifuoggi, M., Rotella, M., & Ruggieri, G. (2010). Hydrogeology and hydrogeochemistry of the plain between Mt. Massico and the River Volturno (Campania Regione, Italy). Italian Journal of Engineering Geology and Environment, 1, Article 1. https://doi.org/10.4408/IJEGE.2010-01.O-04
Chen, A., Zhang, D., Wang, H., Cui, R., Khoshnevisan, B., Guo, S., Wang, P., & Liu, H. (2022). Shallow groundwater fluctuation: An ignored soil N loss pathway from cropland. Science of The Total Environment, 828, 154554. https://doi.org/10.1016/j.scitotenv.2022.154554 DOI: https://doi.org/10.1016/j.scitotenv.2022.154554
Cuoco, E., Darrah, T. H., Buono, G., Eymold, W. K., & Tedesco, D. (2015a). Differentiating natural and anthropogenic impacts on water quality in a hydrothermal coastal aquifer (Mondragone Plain, Southern Italy). Environmental Earth Sciences, 73(11), 7115–7134. https://doi.org/10.1007/s12665-014-3892-3 DOI: https://doi.org/10.1007/s12665-014-3892-3
Cuoco, E., Darrah, T. H., Buono, G., Verrengia, G., De Francesco, S., Eymold, W. K., & Tedesco, D. (2015b). Inorganic contaminants from diffuse pollution in shallow groundwater of the Campanian Plain (Southern Italy). Implications for geochemical survey. Environmental Monitoring and Assessment, 187(2), 46. https://doi.org/10.1007/s10661-015-4307-y DOI: https://doi.org/10.1007/s10661-015-4307-y
De Luca, D. A., Lasagna, M., & Debernardi, L. (2020). Hydrogeology of the western Po plain (Piedmont, NW Italy). Journal of Maps, 16(2), 265–273. https://doi.org/10.1080/17445647.2020.1738280 DOI: https://doi.org/10.1080/17445647.2020.1738280
De Vivo, B., Rolandi, G., Gans, P. B., Calvert, A., Bohrson, W. A., Spera, F. J., & Belkin, H. E. (2001). New constraints on the pyroclastic eruptive history of the Campanian volcanic Plain (Italy). Mineralogy and Petrology, 73(1), 47–65. https://doi.org/10.1007/s007100170010 DOI: https://doi.org/10.1007/s007100170010
De Vita, P., Allocca, V., Celico, F., Fabbrocino, S., Mattia, C., Monacelli, G., Musilli, I., Piscopo, V., Scalise, A. R., Summa, G., Tranfaglia, G., & Celico, P. (2018). Hydrogeology of continental southern Italy. Journal of Maps, 14(2), 230–241. https://doi.org/10.1080/17445647.2018.1454352 DOI: https://doi.org/10.1080/17445647.2018.1454352
Debernardi, L., De Luca, D. A., & Lasagna, M. (2008). Correlation between nitrate concentration in groundwater and parameters affecting aquifer intrinsic vulnerability. Environmental Geology, 55(3), 539–558. https://doi.org/10.1007/s00254-007-1006-1 DOI: https://doi.org/10.1007/s00254-007-1006-1
Deino, A. L., Orsi, G., de Vita, S., & Piochi, M. (2004). The age of the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei caldera – Italy) assessed by 40Ar/39Ar dating method. Journal of Volcanology and Geothermal Research, 133(1), 157–170. https://doi.org/10.1016/S0377-0273(03)00396-2 DOI: https://doi.org/10.1016/S0377-0273(03)00396-2
DHLGH (2021). Ireland’s draft nitrates action programme 2nd stage consultation. Department of Housing, Local Government and Heritage, Government Ireland, Dublin
Ducci, D., Del Gaudio, E., Sellerino, M., Stellato, L., & Corniello, A. (2019a). Hydrochemical and isotopic analyses to identify groundwater nitrate contamination. The alluvial-pyroclastic aquifer of the Campanian plain (southern Italy). Geoingegneria Ambientale e Mineraria, 156(1), 5–13.
Ducci, D., Della Morte, R., Mottola, A., Onorati, G., & Pugliano, G. (2019b). Nitrate trends in groundwater of the Campania region (southern Italy). Environmental Science and Pollution Research, 26(3), 2120–2131. https://doi.org/10.1007/s11356-017-0978-y DOI: https://doi.org/10.1007/s11356-017-0978-y
Ducci, D., Della Morte, R., Mottola, A., Onorati, G., & Pugliano, G. (2020). Evaluating upward trends in groundwater nitrate concentrations: An example in an alluvial plain of the Campania region (Southern Italy). Environmental Earth Sciences, 79(13), 319. https://doi.org/10.1007/s12665-020-09062-8 DOI: https://doi.org/10.1007/s12665-020-09062-8
Dwire, K. A., Mellmann-Brown, S., & Gurrieri, J. T. (2018). Potential effects of climate change on riparian areas, wetlands, and groundwater-dependent ecosystems in the Blue Mountains, Oregon, USA. Climate Services, Assessing and adapting to climate change in the Blue Mountains, Oregon (USA) 10, 44–52. https://doi.org/10.1016/j.cliser.2017.10.002 DOI: https://doi.org/10.1016/j.cliser.2017.10.002
Estévez, J., Llabrés-Brustenga, A., Casas-Castillo, M. C., García-Marín, A. P., Kirchner, R., & Rodríguez-Solà, R. (2022). A quality control procedure for long-term series of daily precipitation data in a semiarid environment. Theoretical and Applied Climatology, 149(3), 1029–1041. https://doi.org/10.1007/s00704-022-04089-2 DOI: https://doi.org/10.1007/s00704-022-04089-2
European Commission (2000). Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Official Journal of the European Communities, 22 December 2000, L 327/1–72
European Commission (2006). Directive 2006/118/EC of the European Parliament and of the Council of 12 December 2006 on the protection of groundwater against pollution and deterioration. Official Journal of the European Union, 27 December 2006, L 372/19–31
European Commission (2014). Commission Directive 2014/80/EU of 20 June 2014 amending Annex II to Directive 2006/118/EC of the European Parliament and of the Council on the protection of groundwater against pollution and deterioration. Official Journal of the European Union, 21 June 2014, L 182/52–55
Fan, Z., Zhang, C., Xu, Y., Nan, C., Lv, Y., Liao, X., Tang, M., & Xu, J. (2023). The influence of water level fluctuations on the migration and enrichment of phosphorus in an agricultural groundwater system, Jianghan Plain. Environmental Science and Pollution Research, 30(8), 21213–21224. https://doi.org/10.1007/s11356-022-23618-0 DOI: https://doi.org/10.1007/s11356-022-23618-0
Forno, M. G., Luca, D. A. D., Bonasera, M., Bucci, A., Gianotti, F., Lasagna, M., Lucchesi, S., Pelizza, S., Taddia, G., & Piana, F. (2018). Synthesis on the Turin subsoil stratigraphy and hydrogeology (NW Italy). Alpine and Mediterranean Quaternary, 31(2), 147–170. https://doi.org/10.26382/AMQ.2018.10
Frollini, E., Preziosi, E., Calace, N., Guerra, M., Guyennon, N., Marcaccio, M., Menichetti, S., Romano, E., & Ghergo, S. (2021). Groundwater quality trend and trend reversal assessment in the European Water Framework Directive context: An example with nitrates in Italy. Environmental Science and Pollution Research, 28(17), 22092–22104. https://doi.org/10.1007/s11356-020-11998-0 DOI: https://doi.org/10.1007/s11356-020-11998-0
Grath, J., Scheidleder, A., Uhlig, S., Weber, K., Kralik, M., Keimel, T., & Gruber, D. (2001). The EU Water Framework Directive: Statistical Aspects of the Identification of Groundwater Pollution Trends, and Aggregation of Monitoring Results. Final Report. Austrian Federal Ministry of Agriculture and Forestry, Environment and Water Management (Ref.: 41.046/01eIV1/00 and GZ 16 2500/2-I/6/00), European Commission (Grant Agreement Ref.: Subv 99/130794), in kind contributions by project partners. Vienna, Austria. Available at: https://circabc.europa.eu/sd/a/a1f194ce-8684-436c-a130-ec88ee781bd2/Groundwater%20trend%20report.pdf – last access 14/01/2024
Güler, C., Thyne, G. D., McCray, J. E., & Turner, A. K. (2002). Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeology Journal, 10, 455–474. https://doi.org/10.1007/s10040-002-0196-6 DOI: https://doi.org/10.1007/s10040-002-0196-6
Hansen, B., Thorling, L., Schullehner, J., Termansen, M., & Dalgaard, T. (2017). Groundwater nitrate response to sustainable nitrogen management. Scientific Reports, 7, 8566. https://doi.org/10.1038/s41598-017-07147-2 DOI: https://doi.org/10.1038/s41598-017-07147-2
Helsel, D.R., Hirsch, R. M., Ryberg, K. R., Archfield, S. A., & Gilroy, E. J. (2020). Statistical methods in water resources: U.S. Geological Survey Techniques and Methods, book 4, chap. A3, 458 p., https://doi.org/10.3133/tm4a3 DOI: https://doi.org/10.3133/tm4A3
Hem, J. D. (1985). Study and interpretation of the chemical characteristics of natural water. In Water Supply Paper (2254). U.S. Geological Survey. https://doi.org/10.3133/wsp2254 DOI: https://doi.org/10.3133/wsp2254
Hudson, H. R., McMillan, D. A., & Pearson, C. P. (1999). Quality assurance in hydrological measurement. Hydrological Sciences Journal, 44(5), 825–834. https://doi.org/10.1080/02626669909492276 DOI: https://doi.org/10.1080/02626669909492276
Jutglar, K., Hellwig, J., Stoelzle, M., & Lange, J. (2021). Post-drought increase in regional-scale groundwater nitrate in southwest Germany. Hydrological Processes, 35, e14307. https://doi.org/10.1002/hyp.14307 DOI: https://doi.org/10.1002/hyp.14307
Kendall, M. (1975). Multivariate Analysis. p. 210. Charles Griffin & Co. LTD, London, UK.
Kim, K.-Y., Seong, H., Kim, T., Park, K.-H., Woo, N.-C., Park, Y.-S., Koh, G.-W., & Park, W.-B. (2006). Tidal effects on variations of fresh–saltwater interface and groundwater flow in a multilayered coastal aquifer on a volcanic island (Jeju Island, Korea). Journal of Hydrology, 330(3), 525–542. https://doi.org/10.1016/j.jhydrol.2006.04.022 DOI: https://doi.org/10.1016/j.jhydrol.2006.04.022
Kumar, P. (2015). Hydrocomplexity: Addressing water security and emergent environmental risks. Water Resources Research, 51, 5827–5838. https://doi.org/10.1002/2015WR017342 DOI: https://doi.org/10.1002/2015WR017342
Kresic, N. (2009). Groundwater resources. Sustainability, management and restoration. 852 pp. Mc Graw Hill, New York. ISBN: 978-0-07-164091-6
Lasagna, M., De Luca, D.A., Debernardi, L., & Clemente, P. (2013). Effect of the dilution process on the attenuation of contaminants in aquifers. Environmental Earth Sciences, 70(6), 2767–2784. https://doi.org/10.1007/s12665-013-2336-9 DOI: https://doi.org/10.1007/s12665-013-2336-9
Lasagna, M., Ducci, D., Sellerino, M., Mancini, S., & De Luca, D.A. (2020a). Meteorological variability and groundwater quality: examples in different hydrogeological settings. Water, 12, 1297. https://doi.org/10.3390/w12051297 DOI: https://doi.org/10.3390/w12051297
Lasagna, M., & De Luca, D. A. (2016). The use of multilevel sampling techniques for determining shallow aquifer nitrate profiles. Environmental Science and Pollution Research, 23(20), 20431–20448. https://doi.org/10.1007/s11356-016-7264-2 DOI: https://doi.org/10.1007/s11356-016-7264-2
Lasagna, M., & De Luca, D.A. (2019). Evaluation of sources and fate of nitrates in the western Po Plain groundwater (Italy) using nitrogen and boron isotopes. Environmental Science and Pollution Research, 26(3), 2089–2104. https://doi.org/10.1007/s11356-017-0792-6 DOI: https://doi.org/10.1007/s11356-017-0792-6
Lasagna, M., De Luca, D. A., & Franchino, E. (2016a). The role of physical and biological processes in aquifers and their importance on groundwater vulnerability to nitrate pollution. Environmental Earth Sciences, 75(11), 961. https://doi.org/10.1007/s12665-016-5768-1 DOI: https://doi.org/10.1007/s12665-016-5768-1
Lasagna, M., De Luca, D. A., & Franchino, E. (2016b). Nitrate contamination of groundwater in the western Po Plain (Italy): The effects of groundwater and surface water interactions. Environmental Earth Sciences, 75(3), 240. https://doi.org/10.1007/s12665-015-5039-6 DOI: https://doi.org/10.1007/s12665-015-5039-6
Lasagna, M., Franchino, E., & De Luca, D.A. (2015). Areal and vertical distribution of nitrate concentration in Piedmont plain aquifers (North-western Italy). G. Lollino et al. (eds.), Engineering Geology for Society and Territory – Volume 3, River Basins, Reservoir Sedimentation and Water Resources, 389–392. Springer International Publishing Switzerland 2015. https://doi.org/10.1007/978-3-319-09054-2_81. DOI: https://doi.org/10.1007/978-3-319-09054-2_81
Lasagna, M., Mancini, S., & De Luca, D. A. (2020b). Groundwater hydrodynamic behaviours based on water table levels to identify natural and anthropic controlling factors in the Piedmont Plain (Italy). Science of The Total Environment, 716, 137051. https://doi.org/10.1016/j.scitotenv.2020.137051 DOI: https://doi.org/10.1016/j.scitotenv.2020.137051
Liu, F., Zou, J., Liu, J., Zhang, J., & Zhen, P. (2022). Factors controlling groundwater chemical evolution with the impact of reduced exploitation. CATENA, 214, 106261. https://doi.org/10.1016/j.catena.2022.106261 DOI: https://doi.org/10.1016/j.catena.2022.106261
Lo Russo, S., Fiorucci, A., & Vigna, B. (2011). Groundwater dynamics and quality assessment in an agricultural area. American Journal of Environmental Sciences, 7(4), 354–361 DOI: https://doi.org/10.3844/ajessp.2011.354.361
Madene, E., Boufekane, A., Derardja, B., Busico, G., & Meddi, M. (2023). The influence of lithology and climatic conditions on the groundwater quality in the semi-arid-regions: Case study of the Eastern Middle Cheliff alluvial aquifer (northwestern Algeria). Acque Sotterranee - Italian Journal of Groundwater, 12(4), Article 4. https://doi.org/10.7343/as-2022-671 DOI: https://doi.org/10.7343/as-2022-671
Mancini, S., Egidio, E., De Luca, D.A., & Lasagna, M. (2022). Application and comparison of different statistical methods for the analysis of groundwater levels over time: response to rainfall and resource evolution in the Piedmont Plain (NW Italy). Science of the Total Environment 846 (2022), 157479. https://doi.org/10.1016/j.scitotenv.2022.157479 DOI: https://doi.org/10.1016/j.scitotenv.2022.157479
Mann, H. B. (1945). Nonparametric Tests Against Trend. Econometrica, 13(3), 245–259. https://doi.org/10.2307/1907187 DOI: https://doi.org/10.2307/1907187
Martinelli, G., Dadomo, A., De Luca, D.A., Mazzola, M., Lasagna, M., Pennisi, M., Pilla, G., Sacchi, E., & Saccon, P. (2018). Nitrate sources, accumulation and reduction in groundwater from Northern Italy: insights provided by a nitrate and boron isotopic database. Applied Geochemistry, 91, 23–35. https://doi.org/10.1016/j.apgeochem.2018.01.011 DOI: https://doi.org/10.1016/j.apgeochem.2018.01.011
Mastrocicco, M., Busico, G., Colombani, N., Vigliotti, M., & Ruberti, D. (2019). Modelling Actual and Future Seawater Intrusion in the Variconi Coastal Wetland (Italy) Due to Climate and Landscape Changes. Water, 11(7), Article 7. https://doi.org/10.3390/w11071502 DOI: https://doi.org/10.3390/w11071502
Mastrocicco, M., Gervasio, M. P., Busico, G., & Colombani, N. (2021). Natural and anthropogenic factors driving groundwater resources salinization for agriculture use in the Campania plains (Southern Italy). Science of The Total Environment, 758, 144033. https://doi.org/10.1016/j.scitotenv.2020.144033 DOI: https://doi.org/10.1016/j.scitotenv.2020.144033
Mendizabal, I., Baggelaar, P.L., & Stuyfzand, P.J. (2012). Hydrochemical trends for public supply well fields in The Netherlands (1898–2008), natural backgrounds and upscaling to groundwater bodies. Journal of Hydrology, 450-451, 279–292. https://doi.org/10.1016/j.jhydrol.2012.04.050 DOI: https://doi.org/10.1016/j.jhydrol.2012.04.050
MATTM Ministero dell’Ambiente e della Tutela del Territorio e del Mare (2016). Decreto Ministeriale del 6 luglio 2016. Recepimento della direttiva 2014/80/UE della Commissione del 20 giugno 2014 che modifica l'allegato II della direttiva 2006/118/CE del Parlamento europeo e del Consiglio sulla protezione delle acque sotterranee dall'inquinamento e dal deterioramento. (16A05182). Gazzetta Ufficiale n. 165 del 16 luglio 2016
Musacchio, A., Re, V., Mas-Pla, J., & Sacchi, E. (2020). EU Nitrates Directive, from theory to practice: Environmental effectiveness and influence of regional governance on its performance. Ambio, 49(2), 504–516. https://doi.org/10.1007/s13280-019-01197-8 DOI: https://doi.org/10.1007/s13280-019-01197-8
Nunziata, G. P. (2023). Trace-elements monitoring of single rainwaters for the environmental risks assessment in the “Land of Fires” located between the provinces of Naples and Caserta. Environmental Earth Sciences, 82(7), 186. https://doi.org/10.1007/s12665-023-10868-5 DOI: https://doi.org/10.1007/s12665-023-10868-5
Ortmeyer, F., Hansen, B., & Banning A. (2023). Groundwater nitrate problem and countermeasures in strongly affected EU countries—a comparison between Germany, Denmark and Ireland. Grundwasser - Zeitschrift der Fachsektion Hydrogeologie, 28, 3–22. https://doi.org/10.1007/s00767-022-00530-5 DOI: https://doi.org/10.1007/s00767-022-00530-5
Parisi, A., Alfio, M. R., Balacco, G., Güler, C., & Fidelibus, M. D. (2023). Analyzing spatial and temporal evolution of groundwater salinization through Multivariate Statistical Analysis and Hydrogeochemical Facies Evolution-Diagram. Science of The Total Environment, 862, 160697. https://doi.org/10.1016/j.scitotenv.2022.160697 DOI: https://doi.org/10.1016/j.scitotenv.2022.160697
Perera, N., Gharabaghi, B., & Howard, K. (2013). Groundwater chloride response in the Highland Creek watershed due to road salt application: A re-assessment after 20 years. Journal of Hydrology 479 (2013) 159-168. http://dx.doi.org/10.1016/j.jhydrol.2012.11.057 DOI: https://doi.org/10.1016/j.jhydrol.2012.11.057
Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water-analyses. Transactions-American Geophysical Union, 25(6), 914–923 DOI: https://doi.org/10.1029/TR025i006p00914
Piana, F., Fioraso, G., Irace, A., Mosca, P., d’Atri, A., Barale, L., Falletti, P., Monegato, G., Morelli, M., Tallone, S., & Vigna, G. B. (2017). Geology of Piemonte region (NW Italy, Alps–Apennines interference zone). Journal of Maps, 13(2), 395–405. https://doi.org/10.1080/17445647.2017.1316218 DOI: https://doi.org/10.1080/17445647.2017.1316218
Refsgaard, J. C., Højberg, A. L., Møller, I., Hansen, M., & Søndergaard, V. (2010). Groundwater Modeling in Integrated Water Resources Management—Visions for 2020. Groundwater, 48(5), 633–648. https://doi.org/10.1111/j.1745-6584.2009.00634.x DOI: https://doi.org/10.1111/j.1745-6584.2009.00634.x
Regione Campania (2013). Il territorio rurale della Campania. Un viaggio nei sistemi agroforestali della regione attraverso i dati del 6° Censimento Generale dell’Agricoltura. Imago Editrice srl – Dragoni (CE). ISBN: 9788895230245. 450 pp. Available at: http://www.agricoltura.regione.campania.it/pubblicazioni/pdf/territorio_rurale.pdf - last accessed 12/12/2023
Repubblica Italiana (2006). Decreto Legislativo 3 aprile 2006, n. 152 (D. Lgs. 152/2006) “Norme in materia ambientale”. Gazzetta Ufficiale n. 88 del 14 aprile 2006 - Suppl. Ordinario n. 96
Repubblica Italiana (2009). Decreto Legislativo 16 marzo 2009, n. 30 (D. Lgs. 30/2009) "Attuazione della direttiva 2006/118/CE, relativa alla protezione elle acque sotterranee dall'inquinamento e dal deterioramento. (09G0038)". Gazzetta Ufficiale n. 79 del 4 aprile 2009
Rotiroti, M., Sacchi, E., Caschetto, M., Zanotti, C., Fumagalli, L., Bonomi, T., & Leoni, B. (2023). Groundwater and surface water nitrate pollution in an intensively irrigated system: Sources, dynamics and adaptation to climate change. Journal of Hydrology 623 (2023) 129868. https://doi.org/10.1016/j.jhydrol.2023.129868 DOI: https://doi.org/10.1016/j.jhydrol.2023.129868
Ruberti, D., & Vigliotti, M. (2017). Land use and landscape pattern changes driven by land reclamation in a coastal area: the case of Volturno delta plain, Campania Region, southern Italy. Environmental Earth Sciences, 76, 694. https://doi.org/10.1007/s12665-017-7022-x DOI: https://doi.org/10.1007/s12665-017-7022-x
Sellerino, M., Forte, G., & Ducci, D. (2019). Identification of the natural background levels in the Phlaegrean fields groundwater body (Southern Italy). Journal of Geochemical Exploration, 200, 181–192. https://doi.org/10.1016/j.gexplo.2019.02.007 DOI: https://doi.org/10.1016/j.gexplo.2019.02.007
SNPA Sistema Nazionale per la Protezione dell’Ambiente (2018). Linea guida per la determinazione dei valori di fondo per i suoli e per le acque sotterranee. ISPRA, Manuali e Linee Guida 174/2018. ISBN 978-88-448-0880-8.
Stein, L. Y., & Klotz, M. G. (2016). The nitrogen cycle. Current Biology, 26(3), R94–R98. https://doi.org/10.1016/j.cub.2015.12.021 DOI: https://doi.org/10.1016/j.cub.2015.12.021
Stuart, M.E., Chilton, P.J., Kinniburgh, D.G. & Cooper, D.M. (2007). Screening for long-term trends in groundwater nitrate monitoring data. Quarterly Journal of Engineering Geology and Hydrogeology, 40, 361 –376. https://doi.org/10.1144/1470-9236/07-040 DOI: https://doi.org/10.1144/1470-9236/07-040
Torres-Martínez, J. A., Mora, A., Knappett, P. S. K., Ornelas-Soto, N., & Mahlknecht, J. (2020). Tracking nitrate and sulfate sources in groundwater of an urbanized valley using a multi-tracer approach combined with a Bayesian isotope mixing model. Water Research, 182, 115962. https://doi.org/10.1016/j.watres.2020.115962 DOI: https://doi.org/10.1016/j.watres.2020.115962
Urresti-Estala, B., Gavilàn, P.J., Pérez, I.V., & Carrasco Cantos, F. (2016). Assessment of hydrochemical trends in the highly anthropised Guadalhorce River basin (southern Spain) in terms of compliance with the European groundwater directive for 2015. Environmental Science and Pollution Research, 23, 15990–16005. https://doi.org/10.1007/s11356-016-6662-9 DOI: https://doi.org/10.1007/s11356-016-6662-9
U.S. Environmental Protection Agency (2015). ProUCL version 5.1.002 Technical Guide. Statistical software for Environmental Applications for Data Sets with and without Nondetect Observations.
Visser, A., Broers, H.P., Heerdink, R., & Bierkens, M.F.P. (2009). Trends in pollutant concentrations in relation to time ofrecharge and reactive transport at the groundwater bodyscale. Journal of Hydrology, 369(3-4), 427–439. https://doi.org/10.1016/j.jhydrol.2009.02.008 DOI: https://doi.org/10.1016/j.jhydrol.2009.02.008
Vigna, B., Fiorucci, A., & Ghielmi, M. (2010). Relations between stratigraphy, groundwater flow and hydrogeochemistry in Poirino Plateau and Roero areas of the Tertiary Piedmont Basin, Italy. Mem. Descr. Carta Geol. D’It., XC, 267–292
Voudouris, K., Panagopoulos, A., & Koumantakis, J. (2000). Multivariate Statistical Analysis in the Assessment of Hydrochemistry of the Northern Korinthia Prefecture Alluvial Aquifer System (Peloponnese, Greece). Natural Resources Research, 9(2), 135–146. https://doi.org/10.1023/A:1010195410646 DOI: https://doi.org/10.1023/A:1010195410646
Wang, L., Stuart, M.E., Lewis, M.A., Ward, R.S., Skirvin, D., Naden, P.S., Collins, A.L., & Ascott, M.J. (2016). The changing trend in nitrate concentrations in major aquifers due to historical nitrate loading from agricultural land across England and Wales from 1925 to 2150. Science of the Total Environment, 542, 694–705. http://dx.doi.org/10.1016/j.scitotenv.2015.10.127 DOI: https://doi.org/10.1016/j.scitotenv.2015.10.127
Wick, K., Heumesser, C., & Schmid, E. (2012). Groundwater nitrate contamination: Factors and indicators. Journal of Environmental Management, 111, 178–186. https://doi.org/10.1016/j.jenvman.2012.06.030 DOI: https://doi.org/10.1016/j.jenvman.2012.06.030
WHO World Health Organization (2022). Guidelines for drinking-water quality: fourth edition incorporating the first and second addenda. Geneva. 614 pp. ISBN: 978-92-4-004506-4. License: CC BY-NC-SA 3.0 IGO.
Yang, J., Liu, H., Tang, Z., Peeters, L., & Ye, M. (2022). Visualization of Aqueous Geochemical Data Using Python and WQChartPy. Groundwater, 60, 555–564. https://doi.org/10.1111/gwat.13185 DOI: https://doi.org/10.1111/gwat.13185
Copyright (c) 2024 the Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
PAGEPress has chosen to apply the Creative Commons Attribution NonCommercial 4.0 International License (CC BY-NC 4.0) to all manuscripts to be published.