Hydrogeological features of the Italian sources included within the European thermal-mineral water inventory developed after the H2020 GeoERA Hover project

Submitted: 24 January 2024
Accepted: 12 April 2024
Published: 27 June 2024
Abstract Views: 526
PDF: 174
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Italy is one of the richest countries in the world with regards to number and quality of thermal-mineral waters and has developed a widespread and extensive use of such resource (e.g. bathing, central heating, electric power production). Premised that, the Geological Survey of Italy (GSI) took part in a work package of the GeoERA Hover project (EU Horizon 2020 program under grant agreement N.731166) aimed at defining the interactions involving the geological asset and the hydrogeological processes with natural quality and contamination risk of groundwater and at building a geodatabase of thermal-mineral groundwater within an Information Platform at European level. The GSI activities also aimed at contributing to fill the lack of a comprehensive work dealing with a national scale hydrogeological picture of thermal-mineral waters in Italy. This paper shows the first results obtained with Hover Project on the definition of a general geologicalhydrogeological scenario of thermal-mineral occurrences at an Italian national scale (240 occurrences with cropping temperature >20°C have been included in a database). Most of exploited thermal-mineral water resources are aligned along the Tyrrhenian-Apenninic margin and in the Italian islands, where the most relevant active or quiescent geothermal fields related to magma ascent processes occur. As concerns physicalchemical features, extreme situations of over-mineralized and very-high temperature waters are not uncommon throughout Italy and correspond to a cluster of important SPA and geothermal field sites. Some preliminary geochemical considerations agree with mutual interaction between hydrothermal fluids rich in SO4-Cl-Na-K, likely originated from (ultra)potassic/calcalkaline/alkaline magmas, and HCO3/CO3-Ca waters, originated from leaching of calcareous rocks by groundwater. A preliminary statistical analysis on geochemical and other features of the Italian thermal-mineral sources on a regional basis envisaged that they do not display fully homogeneous characteristics.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Albu, M., Banks, D., & Nash, H. (Eds.) (1997). Mineral and thermal groundwater resources. Springer, Dordrecht, 431 pp. DOI: https://doi.org/10.1007/978-94-011-5846-6
Angelone, M., Gasparini, C., Guerra, M., Lombardi, S., Pizzino, L., Quattrocchi, F., Sacchi, E., & Zuppi, G.M. (2005). Fluid geochemistry of the Sardinian Rift-Campidano graben (Sardinia, Italy): faults segmentation, seismic quiescence of geochemically “active” faults, and new constraints for selection of CO2 storage sites. Appl. Geochem. 20, 317-340. DOI: https://doi.org/10.1016/j.apgeochem.2004.08.008
Baiocchi, A., Lotti, F., & Piscopo, V. (2012). Conceptual hydrogeological model and groundwater resource estimation in a complex hydrothermal area: the case of the Viterbo geothermal area (central Italy). J. Water Resour. Protect., 4, 231–247. DOI: https://doi.org/10.4236/jwarp.2012.44026
Balderer, W., Porowski, A., Idris, H., & Lamoreaux, L. (Eds.) (2014). Thermal and Mineral Waters: Origin, Properties and Applications. Springer, 135 pp. DOI: https://doi.org/10.1007/978-3-642-28824-1
Beh, E., & Lombardo, R. (2014). Correspondence Analysis. Theory, Practice and New Strategies. Wiley, Chichester, 120 pp. DOI: https://doi.org/10.1002/9781118762875
Bigi, G., Cosentino, D., Parotto, M., Sartori, R., & Scandone P. (1992). Structural Model of Italy. Scale 1:500,000. Quaderni de “La Ricerca
Scientifica”, 114(3). CNR system, geostructural domain) is likely envisaged for evidencing the geostatistical proximity or distance with respect to local occurrences of thermal-mineral sources. Finally, it is opportune to highlight that the cited preliminary results will be submitted to an in deep examination in a next detailed investigation stage to allow a reconstruction in a comprehensive scenario of the Italian thermal-mineral sources.
Boccaletti, M., & Manetti, P. (1978). The Tyrrhenian Sea and adjoining areas. In: Nairn, A.E.M., Kanes, W.H., Stehli, F.G. (Eds.), The Ocean basins and margins. Plenum, New York, 149–200. DOI: https://doi.org/10.1007/978-1-4684-3039-4_3
Boni, C., Bono, P., & Capelli, G. (1986). Schema idrogeologico dell’Italia Centrale “Hydrogeological sketch of Central Italy”. Memorie Società Geologica d’Italia, 35, 991-1012.
Boni, C., Bono, P., Fanelli, M., Funiciello, R., Parotto, M., & Praturlon, A. (1982). Carta delle manifestazioni termali e dei complessi idrogeologici d’Italia “Map of Italian thermal occurrences and hydrogeological complexes”. In: Panichi, C. (Ed.) Contributo alla conoscenza delle risorse geotermiche del territorio italiano. GTM, Rome, Italy: Consiglio Nazionale delle Ricerche – Progetto Finalizzato Energetica – Sottoprogetto Energia Geotermica.
Borg, I., Groenen, P.J.F., & Mair, P. (2018). Applied Multidimensional Scaling and Unfolding (second Edition). Springer, 125 pp. DOI: https://doi.org/10.1007/978-3-319-73471-2
Boschetti, T., Etiope, G., Pennisi, M., Romain, M., & Toscani, L. (2013). Boron, lithium and methane isotope composition of hyperalkaline waters (Northern Apennines, Italy): Terrestrial serpentinization or mixing with brine? Applied Geochemistry, 32, 17-25. DOI: https://doi.org/10.1016/j.apgeochem.2012.08.018
Calcagnile, G., & Panza, G.F. (1979). Crustal and upper mantle structures beneath the Apennine region as inferred from the study of Reyleigh waves. J. Geophys. 45, 319–327.
Cantonati, M., Segadelli, S., Ogata, K., Tran, H., Sanders, D., Gerecke, R., Rott, E., Filippini, M., Gargini, A., & Celico, F. (2016). A global review on ambient Limestone-Precipitating Springs (LPS): Hydrogeological setting, ecology, and conservation. Sci. Total Environ., 568, 624-637. DOI: https://doi.org/10.1016/j.scitotenv.2016.02.105
Carmignani, L. (Coord.) (2001). Geologia della Sardegna - Note illustrative della Carta geologica della Sardegna alla scala 1:200.000 “Geology of Sardinia - Explanatory notes of the Geological Map of Sardinia at 1:200,000 scale”. Mem. Descr. Carta Geol.d’It., LX, 283 pp.
Cataldi, R., Mongelli, F., Squarci, P., Taffi, L., Zito, G., & Calore, C. (1995). Geothermal ranking of Italian territory. Geothermics, 24,115–129. DOI: https://doi.org/10.1016/0375-6505(94)00026-9
Celico, P., De Vita, P., Monacelli, G. Scalise, A.R., & Tranfaglia, G. (2005). Hydrogeological map of southern Italy (1:250,000 scale, with explanatory notes). APAT, University of Naples “Federico II”, INTERREG IIC Programme. IPZS.
Cinti, D., Tassi, F., Procesi, M., Bonini, M., Capecchiacci, F., Voltattorni, N., Vaselli, O., & Quattrocchi, F. (2014). Fluid geochemistry and geothermometry in the unexploited geothermal field of the Vicano–Cimino Volcanic District (Central Italy). Chem. Geol. 371, 96–114. DOI: https://doi.org/10.1016/j.chemgeo.2014.02.005
Civita, M., Lo Russo, S., & Vigna, B. (2004). Carta idrogeologica schematica del Piemonte (NW Italia) 1:250.000 “Hydrogeological scketch map of Piedmont (NW Italy)”. Regione Piemonte, CNRG. N.D.C.I., Politecnico di Torino – Dipartimento Georisorse e Territorio.
Compagnoni, B., Galluzzo, F., Bonomo, R., Capotorti, F., D’Ambrogi, C., Di Stefano, R., Graziano, R., Martarelli, L., Pampaloni, M.L., Pantaloni, M., & Ricci, V. (2011). Carta Geologica d’Italia scala 1:1.000.000 con Note illustrative “Geological Map of Italy atm 1:1,000,000 scale with Explanatory Notes”. Servizio Geologico d’Italia/ Dipartimento Difesa del Suolo-ISPRA. SELCA, Florence, Italy.
Dal Piaz, G.V. (1997). Alpine geology and historical evolution of the orogenic concept. Mem. Sc. Fis., 21, 49-83.
Della Vedova, B., Bellani, S., Pellis, G., & Squarci, P. (2001). Deep temperatures and surface heat flow distribution. In: Vai, G.B., Martini, P. (Eds.) Anatomy of an orogen, the Apennines and adjacent Mediterranean Basin. Kluwer, Dordrecht, The Netherlands, 65–76. DOI: https://doi.org/10.1007/978-94-015-9829-3_7
De Nardo, M.T., Parisi, A., Bonotto, P., & Casoni, S. (2010). Formazione di un talia conoscitivo sulle acque minerali della Regione Emilia-Romagna: stato dell’arte “The knowledge framework on the mineral waters of the Emilia-Romagna: the state of the art”. Il Geologo dell’Emilia-Romagna, 38, 19-38.
Dessì, B., Martarelli, L., & Spizzichino, D. (2015). Italy. In: EuroGeoSurveys (Ed.) Wonder water. The value of water. Brussels, 64-67.
Dewandel, B., Lachassagne, P., Al-Hattali, S., Ladouche, B., Pinault, J.L., & Al-Suleimani, Z. (2005). A conceptual hydrogeological model of ophiolite hard-rock aquifers in Oman based on a multiscale and a multidisciplinary approach. Hydrogeology Journal, 13, 708-726. DOI: https://doi.org/10.1007/s10040-005-0449-2
Dewandel, B., Lachassagne, P., Maréchal, J.C., Wyns, R., & Krishnamurthy, N.S. (2006). A generalized 3-D geological and hydrogeological conceptual model of granite aquifer controlled by single or multiphase weathering. Hydrogeology Journal, 330, 260-284. DOI: https://doi.org/10.1016/j.jhydrol.2006.03.026
Di Napoli, R., Aiuppa, A., Bellomo, S., Brusca, L., D’Alessandro, W., Gagliano-Candela, E., Longo, M., Pecoraino, G., & Valenza, M. (2009). A model for Ischia hydrothermal system: evidence from the chemistry of thermal groundwaters. J. Volcanol. Geothermal Res., 186, 133-159. DOI: https://doi.org/10.1016/j.jvolgeores.2009.06.005
Elster, D., Goldbr Unner, J., Wessely, G., Niederb Acher, P., Schubert, G., Berka, R., Philipp Itsch, R., & Hörhan, T. (2016). Erläuterungen zur geologischen Themenkarte Thermalwässer in Österreich 1:500.000 “Explanatory notes of the geological thematic map of thermal waters in Austria 1:500,000”. Wien, Austria.
Fazlzadeh, M., Sadeghi, H., Bagheri, P., Poureshg, Y., & Rostami, R. (2016). Microbial quality and physical-chemical characteristics of thermal Springs. Environ. Geochem. Health, 38, 413–422. DOI: https://doi.org/10.1007/s10653-015-9727-7
Federico, C., Aiuppa, A., Allard, P., Bellomo, S., Jean-Baptiste, P., Parello, F., & Valenza, M. (2002). Magma-derived gas influx and water-rock interactions in the volcanic aquifer of Mt. Vesuvius, Italy. Geochim. Cosmochim. Acta, 66, 963-981. DOI: https://doi.org/10.1016/S0016-7037(01)00813-4
Giuliano, G., Mari, G.M., & Cavallin, A. (1998). Ricerca sulla vulnerabilità naturale e sul rischio di inquinamento delle acque sotterranee della Pianura Padana e Veneto-Friulana, scala 1:500.000 “Research on natural vulnerability and pollution risk of Po and Veneto- Friuli Plain groundwater. 1:500,000 scale”. CNR-IRSA – Servizio Geologico Nazionale.
Grassa, F., Capasso, G., Favara, R., & Inguaggiato, S. (2006). Chemical and isotopic composition of waters and dissolved gases in some thermal springs of Sicily and adjacent volcanic islands, Italy. Pure Appl. Geophys., 163, 781-80. DOI: https://doi.org/10.1007/s00024-006-0043-0
Guerrieri, L., Cipolloni, C., D’Ambrogi, C., Dessì, B., Di Manna, P., Lucarini, M., Martarelli, L., & Serra, M. (2020). The contribution of the Geological Survey of Italy to the GeoERA Programme challenges towards a geological service for Europe, EGU General Assembly 2020, Online, May 2020, https://doi.org/10.5194/egusphere-egu2020-21381. DOI: https://doi.org/10.5194/egusphere-egu2020-21381
Hastie, T., Tibshirani, R., & Friedman, J. (2001). The Elements of Statistical Learning. Springer, New York. Hierarchical clustering (Ch. 14.3.12), pp. 272–280. DOI: https://doi.org/10.1007/978-0-387-21606-5
Li Castri, A. (2009). Thermal baths and wellness in Italy. Press Therm Climat, 146, 265-272.
Mantelli, F., Menichetti, S., & Calà, P. (Eds.) (2014). Principali emergenze termali in Toscana “Main thermal occurrences in Tuscany”. Regione Toscana – ARPAT.
Mariotti, G., & Doglioni, C. (2000). The dip of the foreland monocline in the Alps and Apennines. Earth Planet. Sci. Letters, 181, 191-202. DOI: https://doi.org/10.1016/S0012-821X(00)00192-8
Marrero-Diaz, R., Carvalho, M.R., Policarpo, A., & Carreira, P. (2015). Tracing Groundwater Salinization of Thermomineral Waters in Estoril Region by Geochemical and Isotopic Approach. International Symposium on Isotope Hydrology: Revisiting Foundations and Exploring Frontiers – CN225, Vienna, Austria (extended abstract), 136, 86-89.
Matsumoto, S. (2018). Evaluation of the Role of Balneotherapy in Rehabilitation Medicine. J. Nippon Med. Sch., 85, 196–203. DOI: https://doi.org/10.1272/jnms.JNMS.2018_85-30
Minissale, A. (1991). Thermal springs in Italy: their relation to recent tectonics. Applied Geochemistry, 6, 201-212. DOI: https://doi.org/10.1016/0883-2927(91)90030-S
Minissale, A. (2004) Origin, transport and discharge of CO2 in central Italy. Earth-Science Reviews, 66, 89-141. DOI: https://doi.org/10.1016/j.earscirev.2003.09.001
Minissale, A., Donato, A., Procesi, M., Giammanco, S., & Pizzino, L. (2016). Dati e Carte geochimiche del Mezzogiorno d’Italia “Geochemical data and maps of Southern Italy”. In: Manzella, A. (Ed.) Progetto Atlante Geotermico del Mezzogiorno, CNR per il Mezzogiorno, CNR-IGG, Pisa, Italy.
Morer, C., Roques, C.F., Françon, A., Forestier, R., & Maraver, F. (2017). The role of mineral elements and other chemical compounds used in balneology: Data from double-blind randomized clinical trials. Int. J Biometeorol., 61, 2159–2173. DOI: https://doi.org/10.1007/s00484-017-1421-2
Petrović, T., Zlokolica-Mandić, M., Veljković, N., & Vidojević, N. (2010). Hydrogeological Conditions for the Forming and Quality of Mineral Waters in Serbia. Journal of Geochemical Exploration, 107, 373-381 DOI: https://doi.org/10.1016/j.gexplo.2010.07.009
Pietracaprina, A., Dettori, B., & Mouton, J. (1980). Carta delle risorse idriche della Sardegna alla scala 1:250.000. Schema Idrogeologico “Water resource map of Sardinia at 1:250,000 scale. Hydrogeological scketch”. In: Ricerche idriche sotterranee in Sardegna. Università degli Studi di Sassari – Cassa per il Mezzogiorno, Progetto Speciale 25.
Piper, A.M. (1944). A graphic procedure in the geochemical interpretation of water analyses. Trans. Am. Geophys. Un., 25, 914-923. DOI: https://doi.org/10.1029/TR025i006p00914
Porowski, A. (2019). Mineral and Thermal Waters, Chapter 3. In: Environmental Geology. Encyclopedia of Sustainability Science and Technology, Second Edition. Springer Nature. 149-181. DOI:10.1007/978-1-4939-8787-0_978 DOI: https://doi.org/10.1007/978-1-4939-8787-0_978
Rajapaksha, B.M.M., Maithreepala, R.A., & Asanthi, H.B. (2014). Water quality and biology of hot springs waters of Mahapelessa, Sri Lanka. Scientific Research Journal, II(XII), 1-6.
Regione Emilia-Romagna, & ENI-AGIP (1998). Riserve idriche sotterranee della Regione Emilia-Romagna “Groundwater resources of Emilia-Romagna Region”. Di Dio, G. (Ed). S.EL.CA. Firenze.120 pp.
Regione Lombardia, & ENI (2002). Geologia degli Acquiferi Padani della Regione Lombardia “Po Plain aquifers geology of the Lombardy Region”. Piccin, A., Carcano, C. (Eds). S.EL.CA. Firenze. 130 pp.
Repubblica Italiana (2000). Legge 24 ottobre 2000, N.323, Riordino del settore termale “Law October 24th2000, N.323, Reorganization of the thermal sector”. Gazzetta Ufficiale della Repubblica Italiana, Serie Generale, N.261, 08/11/2000.
Retike, I., Kalvans, A., Popovs, K., Bikse, J., Babre, A., & Delina, A. (2016). Geochemical classification of groundwater using multivariate statistical analysis in Latvia. Hydrology Research, 47(4), 799-813. DOI: https://doi.org/10.2166/nh.2016.020
Rman, N. (2016). Hydrogeochemical and isotopic tracers for identification of seasonal and long-term over-exploitation of the Pleistocene thermal waters. Environmental monitoring and assessment, 188(4), 242-262. DOI: https://doi.org/10.1007/s10661-016-5250-2
Scrocca, D., Doglioni C., & Innocenti F. (2003). Constrains for an interpretation of the Italian geodynamics: a review. Mem. Descr. Carta Geol. d’It., LXII, 15-46.
Serri, G., Innocenti, F., & Manetti P. (2001). Magmatism from Mesozoic to Present: petrogenesis, time-space distribution and geodynamic DOI: https://doi.org/10.1007/978-94-015-9829-3_8
implications. In: Vai, G.B., & Martini, I.P. (Eds.): Anatomy of an Orogen: the Apennines and the adjacent Mediterranean Basins.
Kluwer Academic Publishers, 77-104. Dordrecht, The Netherlands. Szocs, T., Frape, S., Gwynne, R., & Palcsu, L. (2017). Chlorine stable isotope and helium isotope studies contributing to the understanding of the hydrogeochemical characteristics of old groundwater. Procedia Earth and Planetary Science, 17, 877-880. DOI information: 10.1016/j.proeps.2017.01.004 DOI: https://doi.org/10.1016/j.proeps.2017.01.004
Vai, G.B., & Martini, I.P. (Eds.) (2001). Anatomy of an orogen: the Apennines and adjacent Mediterranean basins. Kluwer Academic Publishers. Dordrecht, The Netherlands DOI: https://doi.org/10.1007/978-94-015-9829-3
Valeriani, F., Margarucci, L.M., & Spica, V.R. (2018). Recreational Use of Spa Thermal Waters: Criticisms and Perspectives for Innovative Treatments. Int. J. Environ. Res. Public Health, 15, 26-75. Doi:10.3390/ijerph15122675 DOI: https://doi.org/10.20944/preprints201810.0634.v1
Vuataz, F.D. (1997). Natural variations and human influences on thermal water resources in the Alpine environment (extended abstract). 33rd Conference of the International Society of Hydrothermal Techniques, Hakone, Japan, 1-6.
Wilson, M. & Bianchini, G. (1999). Tertiary-Quaternary magmatism within the Mediterranean and surrounding regions. In: Durand, B., Jolivet, L., Horvath, F., Séranne, M. (Eds.) The mediterranean Basins: tertiary Extension within the Alpine Orogen. Geol. Soc. London, Spec. Publ., 156, 141-168. DOI: https://doi.org/10.1144/GSL.SP.1999.156.01.09

How to Cite

Dessì, B., Gafà, R. M., Martarelli, L., Monti, G. M., & Silvi, A. (2024). Hydrogeological features of the Italian sources included within the European thermal-mineral water inventory developed after the H2020 GeoERA Hover project. Acque Sotterranee - Italian Journal of Groundwater, 13(2), 7–17. https://doi.org/10.7343/as-204-750

Similar Articles

<< < 27 28 29 30 31 32 

You may also start an advanced similarity search for this article.