The use of geographic information systems and remote sensing to evaluate climate change effect on groundwater: application to Mostaganem Plateau, Northwest Algeria


Submitted: 24 February 2024
Accepted: 2 September 2024
Published: 30 December 2024
Abstract Views: 48
PDF: 22
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Effects of climate change in semi-arid areas occur in drought events, which affect aquifers whose recharge depends essentially on precipitation. The objective of this study is to evaluate the relationship between depth to groundwater (DTW), precipitation, Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST), in the alluvial aquifer of Mostaganem Plateau, Algeria over 2000, 2005, 2010-2011 and 2014-2015. This is caried out through an adaptive methodology, using remote sensing, Geographic Information Systems (GIS), and statistical analysis: correlation analysis and Multiple Linear Regression (MLR). The results indicate a 62 mm decline in precipitation from 2000 to 2015, inducing shifts in spatial patterns. This resulted in an increase of DTW (4 m to 10 m). The strong negative correlation between decreased precipitation and increased DTW, supported by an R2 value of -0.80, is evident. Moreover, NDVI and LST values increased notably by 0.034 and 3.38°C, respectively. The relationship between DTW, NDVI, and LST showed a diminishing negative correlation. The MLR reaffirmed the influence of precipitation and highlighted the impact of human activity on DTW and drought indicators effectiveness. High NDVI values indicated intensive groundwater pumping, while elevated LST contributed to DTW decrease due to increased evaporation rates caused by changes in crop types resulting from human actions. This study contributes to the understanding of the dynamic interactions between DTW, precipitation, and anthropogenic activities and gives insight to decision makers regarding irrigation strategies.


Abdelhamid, K., Drias, T., & Reghais, A. (2023). Assessment of groundwater vulnerability to pollution using DRASTIC and the SI methods: Case of the alluvial aquifer in Tadjenanet- Chelghoum laid (East Algeria). Acque Sotterranee - Italian Journal of Groundwater, 12(2), 37–47. https://doi.org/10.7343/as-2023-644 DOI: https://doi.org/10.7343/as-2023-644

Al-ruzouq, R., Shanableh, A., Khalil, M. A., Zeiada, W., Hamad, K., Dabous, Saleh Abu Gibril, M. B., Al-khayyat, G., Kaloush, K. E., Al-mansoori, S., & Jena, R. (2022). Spatial and Temporal Inversion of Land Surface Temperature along Coastal Cities in Arid Regions. Remote Sensing, 14(1893), 1–32. DOI: https://doi.org/10.3390/rs14081893

Alsamadisi, A. G., Tran, L. T., & Papeş, M. (2020). Employing inferences across scales: Integrating spatial data with different resolutions to enhance Maxent models. Ecological Modelling, 415, 108857. https://doi.org/10.1016/j.ecolmodel.2019.108857 DOI: https://doi.org/10.1016/j.ecolmodel.2019.108857

Baiche, A., H, S. M., & Ablaoui, H. (2015). Surexploitation Des Ressources En Eau De L’Aquifere Du Plateau De Mostaganem. Larhyss, June, 153–165.

Barkey, B. L., & Bailey, R. T. (2017). Estimating the Impact of Drought on Groundwater Resources of the Marshall Islands. 1–12. https://doi.org/10.3390/w9010041 DOI: https://doi.org/10.3390/w9010041

Belguesmia, S., Yousfi, B., & Otmane, T. (2021). Interface ville / campagne et dynamiques des espaces périurbains d ’ une ville. Cahiers de Géographie Du Québec, 63(179–180), 259–279. DOI: https://doi.org/10.7202/1084236ar

Bellal, S.-A., Baiche, A., & Dari, O. (2020). Sècheresse et fluctuations des ressources en eau souterraines: le cas du plateau de Mostaganem (ouest algérien). Eau et Environnement Territoires et Sociétés, 14, 107.

Belnap, J. (2006). The potential roles of biological soil crusts in dryland hydrologic cycles. Hydrological Processes: An Internatiolan Journal, 20(15), 3159–3178. https://doi.org/10.1002/hyp DOI: https://doi.org/10.1002/hyp.6325

Benfetta, H., & Ouadja, A. (2020). Groundwater overuse in arid areas: case study of syncline Bouguirat-Mostaganem, Algeria. Arabian Journal of Geosciences, 13(16). https://doi.org/10.1007/s12517-020-05765-1 DOI: https://doi.org/10.1007/s12517-020-05765-1

Birylo, M. (2020). Elaboration of the Relationship between the Groundwater Level in Unconfined Aquifer and the Value of Precipitation and Evapotranspiration. Environmental Science Proceeding, 17. https://doi.org/10.3390/environsciproc2020002017 DOI: https://doi.org/10.3390/environsciproc2020002017

Boualem, A., Khaldi, A., & Larid, M. (2015). The impact of climate change on the choice of irrigation technology in the region of Mostaganem ( Algeria ). WALIA JOURNAL, 31(S1)(January), 15–21.

Boukrentach, H., Benali, A., & Dekkiche, H. (2017). Combining GIS and fuzzy multi-criteria decision-making for water catchment drilling site selection. Arabian Journal of Geosciences, 10(24). https://doi.org/10.1007/s12517-017-3309-1 DOI: https://doi.org/10.1007/s12517-017-3309-1

Ceola, S., Mård, J., & Di Baldassarre, G. (2023). Drought and Human Mobility in Africa. Earth’s Future, 11(12), 1–11. https://doi.org/10.1029/2023EF003510 DOI: https://doi.org/10.1029/2023EF003510

Condon, L. E., Atchley, A. L., & Maxwell, R. M. (2020). Evapotranspiration depletes groundwater under warming over the contiguous United States. Nature Communications, 11(873), 8. https://doi.org/10.1038/s41467-020-14688-0 DOI: https://doi.org/10.1038/s41467-020-14688-0

Ermida, S. L., Soares, P., Mantas, V., Göttsche, F. M., & Trigo, I. F. (2020). Google earth engine open-source code for land surface temperature estimation from the landsat series. Remote Sensing, 12(9), 1–21. https://doi.org/10.3390/RS12091471 DOI: https://doi.org/10.3390/rs12091471

Fayech, D., & Tarhouni, J. (2021). Climate variability and its effect on normalized difference vegetation index (NDVI) using remote sensing in semi-arid area. Modeling Earth Systems and Environment, 7(3), 1667–1682. https://doi.org/10.1007/S40808-020-00896-6/FIGURES/10 DOI: https://doi.org/10.1007/s40808-020-00896-6

Fistikoglu, O., Gunduz, O., & Simsek, C. (2016). The Correlation Between Statistically Downscaled Precipitation Data and Groundwater Level Records in North-Western Turkey. Water Resources Management, 30(15), 5625–5635. https://doi.org/10.1007/s11269-016-1313-y DOI: https://doi.org/10.1007/s11269-016-1313-y

Hamzeh, S., Mehrabi, M., Alavipanah, S. K., & Moghadam, M. K. (2018). INVESTIGATING THE RELATIONSHIP BETWEEN SHALLOW GROUNDWATER , SOIL MOISTURE AND LAND SURFACE TEMPERATURE USING REMOTELY SENSED DATA. IGARSS IEEE International Geoscience and Remote Sensing Symposium, 7789–7792. DOI: https://doi.org/10.1109/IGARSS.2018.8518165

Hennane, S., Hamou, A., Chemani, H., Janin, G., & Tayeb, A. (2019). Évaluation numérique des rejets de CO2, gaz à effets de serre, au niveau de la zone industrielle d’Arzew, ALGÉRIE. Algerian Journal of Environmental Science and Technology, 5(2), 977–982. https://www.aljest.net/index.php/aljest/article/view/31

Henrique, P., Magnoni, J., Oliveira, C. De, Silva, F., & Lilla, R. (2020). Groundwater recharge and water table levels modelling using remotely sensed data and cloud ‑ computing. Sustainable Water Resources Management, 6. https://doi.org/10.1007/s40899-020-00469-6 DOI: https://doi.org/10.1007/s40899-020-00469-6

Holder. (1985). Multiple Linear Regression in Hydrology. Institute of Hydrology.

Hoogesteger, J. (2022). Regulating agricultural groundwater use in arid and semi-arid regions of the Global South: Challenges and socio-environmental impacts. Current Opinion in Environmental Science & Health, 27, 100341. https://doi.org/10.1016/J.COESH.2022.100341 DOI: https://doi.org/10.1016/j.coesh.2022.100341

Hussain, F., Wu, R., & Shih, D. (2022). Journal of Hydrology : Regional Studies Water table response to rainfall and groundwater simulation using physics-based numerical model : WASH123D. Journal of Hydrology: Regional Studies, 39(January), 100988. https://doi.org/10.1016/j.ejrh.2022.100988 DOI: https://doi.org/10.1016/j.ejrh.2022.100988

Hussain, S., & Karuppannan, S. (2023). Land use/land cover changes and their impact on land surface temperature using remote sensing technique in district Khanewal, Punjab Pakistan. Geology, Ecology, and Landscapes, 7(1), 46–58. https://doi.org/10.1080/24749508.2021.1923272 DOI: https://doi.org/10.1080/24749508.2021.1923272

Ikechukwu, M. N., Ebinne, E., Idorenyin, U., & Raphael, N. I. (2017). Accuracy Assessment and Comparative Analysis of IDW , Spline and Kriging in Spatial Interpolation of Landform ( Topography ): An Experimental Study. Journal of Geographic Information System, 9, 354–371. https://doi.org/10.4236/jgis.2017.93022 DOI: https://doi.org/10.4236/jgis.2017.93022

IPCC. (2023). Climate Change 2023: Synthesis Report | UNEP - UN Environment Programme. https://doi.org/10.59327/IPCC/AR6-9789291691647 DOI: https://doi.org/10.59327/IPCC/AR6-9789291691647

IPCC, Efitre, J., Liwenga, E., Möller, V., Diemen, R. van, Matthews, J. B. R., Méndez, C., Semenov, S., Fuglestvedt, J. S., & Reisinger, A. (2022). Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. https://doi.org/10.1017/9781009325844.029.2897

Jasechko, S., Seybold, H., Perrone, D., Fan, Y., Shamsudduha, M., Taylor, R. G., Fallatah, O., & Kirchner, J. W. (2024). Rapid groundwater decline and some cases of recovery in aquifers globally. Nature, 625(7996), 715–721. https://doi.org/10.1038/s41586-023-06879-8 DOI: https://doi.org/10.1038/s41586-023-06879-8

Jin, X., Chen, M., Fan, Y., Duan, H., & Yan, L. (2019). Rangeland Ecology & Management In fl uences of Groundwater and Climatic Factors on Grassland in Xiliao River Plain , Northern China ☆. Rangeland Ecology & Management, 72(3), 425–432. https://doi.org/10.1016/j.rama.2018.12.004 DOI: https://doi.org/10.1016/j.rama.2018.12.004

Karnieli, A., Agam, N., Pinker, R. T., Anderson, M., Imhoff, M. L., Gutman, G. G., Panov, N., & Goldberg, A. (2010). Use of NDVI and land surface temperature for drought assessment: Merits and limitations. Journal of Climate, 23(3), 618–633. https://doi.org/10.1175/2009JCLI2900.1 DOI: https://doi.org/10.1175/2009JCLI2900.1

Keblouti, M., Ouerdachi, L., & Boutaghane, H. (2012). Spatial Interpolation of Annual Precipitation in Annaba-Algeria - Comparison and Evaluation of Methods. Energy Procedia, 18, 468–475. https://doi.org/10.1016/J.EGYPRO.2012.05.058 DOI: https://doi.org/10.1016/j.egypro.2012.05.058

Li, C. Q., Gao, Y. G., & Xu, H. Q. (2023). Cross Comparison Between Landsat New Land Surface Temperature Product and the Corresponding MODIS Product. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 43(3), 940–948. https://doi.org/10.3964/j.issn.1000-0593(2023)03-0940-09

Liou, Y., & Mulualem, G. M. (2019). Spatio – temporal Assessment of Drought in Ethiopia and the Impact of Recent Intense Droughts. Remote Sensing, 1–19. https://doi.org/10.3390/rs11151828 DOI: https://doi.org/10.3390/rs11151828

Lu, C., Song, Z., Wang, W., Zhang, Y., Si, H., & Liu, B. (2021). Spatiotemporal variation and long-range correlation of groundwater depth in the Northeast China Plain and North China Plain from 2000 ~ 2019. Journal of Hydrology: Regional Studies, 37(July), 100888. https://doi.org/10.1016/j.ejrh.2021.100888 DOI: https://doi.org/10.1016/j.ejrh.2021.100888

Maboa, R., Yessoufou, K., Tesfamichael, S., & Shiferaw, Y. A. (2022). Sizes of atmospheric particulate matters determine the outcomes of their interactions with rainfall processes. Scientific Reports, 12(1), 1–10. https://doi.org/10.1038/s41598-022-22558-6 DOI: https://doi.org/10.1038/s41598-022-22558-6

Madene, E., Boufekane, A., Derardja, B., Busico, G., & Meddi, M. (2023). The influence of lithology and climatic conditions on the groundwater quality in the semi-arid-regions: case study of the Eastern Middle Cheliff alluvial aquifer (northwestern Algeria). Acque Sotterranee - Italian Journal of Groundwater, 12(4), 19–36. https://doi.org/10.7343/as-2022-671 DOI: https://doi.org/10.7343/as-2022-671

Malik, M. S., Shukla, J. P., & Mishra, S. (2021). Effect of Groundwater Level on Soil Moisture , Soil Temperature and Surface Effect of Groundwater Level on Soil Moisture , Soil Temperature and Surface Temperature. Journal of the Indian Society of Remote Sensing, 49(9), 2143–2161. https://doi.org/10.1007/s12524-021-01379-6 DOI: https://doi.org/10.1007/s12524-021-01379-6

Medina-Fernández, S. L., Núñez, J. M., Barrera-Alarcón, I., & Perez-DeLaMora, D. A. (2023). Surface Urban Heat Island and Thermal Profiles Using Digital Image Analysis of Cities in the El Bajío Industrial Corridor, Mexico, in 2020. Earth (Switzerland), 4(1), 93–150. https://doi.org/10.3390/earth4010007 DOI: https://doi.org/10.3390/earth4010007

Mseli, Z. H., Said, A., Sankaranna, G., & Mwegoha, W. J. (2023). The sustainability of groundwater in semi-arid regions: the case of Makutupora Basin in Tanzania. Aqua Water Infrastructure, Ecosystems and Society, 72(9), 1731–1747. https://doi.org/10.2166/aqua.2023.056 DOI: https://doi.org/10.2166/aqua.2023.056

Nassery, H. R., Zeydalinejad, N., Alijani, F., & Shakiba, A. (2021). A proposed modelling towards the potential impacts of climate change on a semi-arid, small-scaled aquifer: a case study of Iran. Environmental Monitoring and Assessment, 193(4). https://doi.org/10.1007/s10661-021-08955-w DOI: https://doi.org/10.1007/s10661-021-08955-w

National Agency of Water Resources. (1975). Piezometric directories, Mostaganem Plateau (Issue Report).

Ndehedehe, C. E., Ferreira, V. G., Adeyeri, O. E., Correa, F. M., Usman, M., Oussou, F. E., Kalu, I., Okwuashi, O., Onojeghuo, A. O., Getirana, A., & Dewan, A. (2023). Global assessment of drought characteristics in the Anthropocene. Resources, Environment and Sustainability, 12(December 2022), 100105. https://doi.org/10.1016/j.resenv.2022.100105 DOI: https://doi.org/10.1016/j.resenv.2022.100105

Ngo, T. M. L., Wang, S. J., & Chen, P. Y. (2024). Assessment of Future Climate Change Impacts on Groundwater Recharge Using Hydrological Modeling in the Choushui River Alluvial Fan, Taiwan. Water (Switzerland), 16(3). https://doi.org/10.3390/w16030419 DOI: https://doi.org/10.3390/w16030419

Nimon, K. F., & Oswald, F. L. (2013). Understanding the Results of Multiple Linear Regression. Https://Doi.Org/10.1177/1094428113493929, 16(4), 650–674. https://doi.org/10.1177/1094428113493929 DOI: https://doi.org/10.1177/1094428113493929

Owuor, S. O., Guzha, A. C., Rufino, M. C., Pelster, D. E., & Breuer, L. (2016). Groundwater recharge rates and surface runoff response to land use and land cover changes in semi-arid environments. Ecological Processes, 5(16), 21. https://doi.org/10.1186/s13717-016-0060-6 DOI: https://doi.org/10.1186/s13717-016-0060-6

Oxford Analytica, O. (2023). Climate change will hit Middle East/North Africa hard. In Emerald Expert Briefings (Issue oxan-db). Oxford Analytica.

Pei, Z., Fang, S., Yang, W., Wang, L., Wu, M., Zhang, Q., Han, W., & Khoi, D. N. (2019). The relationship between NDVI and climate factors at different monthly time scales: A case study of grasslands in inner mongolia, China (1982-2015). Sustainability (Switzerland), 11(24). https://doi.org/10.3390/su11247243 DOI: https://doi.org/10.3390/su11247243

Philip, S., Kew, S., Vautard, R., Pinto, I., Vahlberg, M., Singh, R., Driouech, F., Lguensat, R., Barnes, C., & Otto, F. (2023). Extreme April heat in Spain , Portugal , Morocco & Algeria almost impossible without climate change. Creative Commons, 1–11.

Robinson, D. ., Campbell, C. ., Hopmans, J. ., Hornbuckle, B, K., Jones, S. ., Knight, R., Ogden, F., Selker, J., & Wendroth, O. (2008). Soil Moisture Measurement for Ecological. Vardoze Zone Journal, 7(1), 358–389. https://doi.org/10.2136/vzj2007.0143 DOI: https://doi.org/10.2136/vzj2007.0143

Roy, B., & Bari, E. (2022). Heliyon Examining the relationship between land surface temperature and landscape features using spectral indices with Google Earth Engine. Heliyon, 8(May), e10668. https://doi.org/10.1016/j.heliyon.2022.e10668 DOI: https://doi.org/10.1016/j.heliyon.2022.e10668

Seager, R., Liu, H., Henderson, N., Simpson, I., Kelley, C., Shaw, T., Kushnir, Y., & Ting, M. (2014). Causes of increasing aridification of the Mediterranean region in response to rising greenhouse gases. Journal of Climate, 27(12), 4655–4676. https://doi.org/10.1175/JCLI-D-13-00446.1 DOI: https://doi.org/10.1175/JCLI-D-13-00446.1

Senn, S. J., Rothman, K. J., Carlin, J. B., Poole, C., Goodman, S. N., Altman, D. G., Carlin, J. B., & Poole, C. (2016). Statistical tests , P values , confidence intervals , and power : a guide to misinterpretations. European Journal of Epidemiology, 31(4), 337–350. https://doi.org/10.1007/s10654-016-0149-3 DOI: https://doi.org/10.1007/s10654-016-0149-3

Song, G., Huang, J. ting, Ning, B. han, Wang, J. wei, & Zeng, L. (2021). Effects of groundwater level on vegetation in the arid area of western China. China Geology, 4(3), 527–535. https://doi.org/10.31035/cg2021062 DOI: https://doi.org/10.31035/cg2021062

Stambouli, A. B., Hamiche, A. M., & Flazi, S. (2016). A review on the water and energy sectors in Algeria: Current, forecasts, scenario and sustainability issues. Renewable Energy and Power Quality Journal, 1(14), 27–34. https://doi.org/10.24084/repqj14.217 DOI: https://doi.org/10.24084/repqj14.217

Tabari, H., Nikbakht, J., & Shifteh Some’e, B. (2012). Investigation of groundwater level fluctuations in the north of Iran. Environmental Earth Sciences, 66(1), 231–243. https://doi.org/10.1007/s12665-011-1229-z DOI: https://doi.org/10.1007/s12665-011-1229-z

Tang, T., Shindell, D., Samset, B. H., Boucher, O., Forster, P. M., Hodnebrog, Ø., Myhre, G., Sillmann, J., Voulgarakis, A., Andrews, T., Faluvegi, G., Fläschner, D., Iversen, T., Kasoar, M., Kharin, V., Kirkeväg, A., Lamarque, J. F., Olivié, D., Richardson, T., … Takemura, T. (2018). Dynamical response of Mediterranean precipitation to greenhouse gases and aerosols. Atmospheric Chemistry and Physics, 18(11), 8439–8452. https://doi.org/10.5194/acp-18-8439-2018 DOI: https://doi.org/10.5194/acp-18-8439-2018

Thomas, B. F., Behrangi, A., & Famiglietti, J. S. (2016). Precipitation intensity effects on groundwater recharge in the southwestern United States. Water (Switzerland), 8(3), 12–17. https://doi.org/10.3390/w8030090 DOI: https://doi.org/10.3390/w8030090

Touitou, M., & Abul Quasem, A.-A. (2018). Climate change and water resources in Algeria: vulnerability, impact and adaptation strategy. Economic and Environmental Studies, 18(45), 411–429. https://doi.org/10.25167/ees.2018.45.23 DOI: https://doi.org/10.25167/ees.2018.45.23

Tramblay, Y., Llasat, M. C., Randin, C., & Coppola, E. (2020). Climate change impacts on water resources in the Mediterranean. In Regional Environmental Change (Vol. 20, Issue 3). Springer. https://doi.org/10.1007/s10113-020-01665-y DOI: https://doi.org/10.1007/s10113-020-01665-y

Tsuyuguchi, B. B., Morgan, E. A., Rêgo, J. C., & Oliveira Galvão, C. de. (2020). Governance of alluvial aquifers and community participation: a social-ecological systems analysis of the Brazilian semi-arid region. Hydrogeology Journal, 28(5), 1539–1552. https://doi.org/10.1007/s10040-020-02160-8 DOI: https://doi.org/10.1007/s10040-020-02160-8

Tuel.A, & Eltahir.E.A.B. (2020). Why Is the Mediterranean a Climate Change Hot Spot ? Journal of Climate, 33(14), 5829–5843. https://doi.org/10.1175/JCLI-D-19-0910.1 DOI: https://doi.org/10.1175/JCLI-D-19-0910.1

Van DenHooven, M. (2020). Turning a polygon into a grid with QGIS | Maarten van den Hoven. https://maartenvandenhoven.com/blog/turning-a-polygon-into-a-grid-with-qgis/

Venkata Sudhakar, C., Umamaheswara Reddy, G., & Usha Rani, N. (2022). Delineation and evaluation of the captive limestone mining area change and its influence on the environment using multispectral satellite images for industrial long-term sustainability. Cleaner Engineering and Technology, 10(August), 100551. https://doi.org/10.1016/j.clet.2022.100551 DOI: https://doi.org/10.1016/j.clet.2022.100551

Venkatesan, G., Subramani, T., Karunanidhi, D., Sathya, U., & Li, P. (2021). Impact of precipitation disparity on groundwater fluctuation in a semi-arid region ( Vellore district ) of southern India using geospatial techniques. 18539–18551. DOI: https://doi.org/10.1007/s11356-020-10790-4

Wan, Z. (2014). New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sensing of Environment, 140, 36–45. https://doi.org/10.1016/J.RSE.2013.08.027 DOI: https://doi.org/10.1016/j.rse.2013.08.027

Zeng, Z., Peng, L., & Piao, S. (2018). Response of terrestrial evapotranspiration to Earth’s greening. Current Opinion in Environmental Sustainability, 33(December 2017), 9–25. https://doi.org/10.1016/j.cosust.2018.03.001 DOI: https://doi.org/10.1016/j.cosust.2018.03.001

Zhang, H., & Wang, X. S. (2020). The impact of groundwater depth on the spatial variance of vegetation index in the Ordos Plateau, China: A semivariogram analysis. Journal of Hydrology, 588(29), 125096. https://doi.org/10.1016/j.jhydrol.2020.125096 DOI: https://doi.org/10.1016/j.jhydrol.2020.125096

Chemirik, C. H. K., Baahmed, D., Nedjai, R., Boudjemline, D., & Mahcer, I. (2024). The use of geographic information systems and remote sensing to evaluate climate change effect on groundwater: application to Mostaganem Plateau, Northwest Algeria. Acque Sotterranee - Italian Journal of Groundwater, 13(4). https://doi.org/10.7343/as-2024-754

Downloads

Download data is not yet available.

Citations