Evaluating groundwater residence time in arid aquifers: a crucial metric for monitoring sustainable water management


Submitted: 20 February 2024
Accepted: 9 September 2024
Published: 30 December 2024
Abstract Views: 35
PDF: 17
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Assessing groundwater residence time in aquifers of arid regions by analyzing natural radionuclides is crucial for predicting water contaminants, understanding groundwater system dynamics and ensuring sustainable water utilization. This study focuses on the evaluation of groundwater residence time in northeastern Saudi Arabia using tritium as a tracer, where water samples were collected from monitoring wells. Due to the low levels of tritium, the water was reduced twenty to thirty- times from its initial values through the electrolysis process. The enriched samples were meticulously analyzed using a liquid scintillation counter under optimal conditions to determine tritium concentrations. Validation from two international commercial tritium laboratories further confirmed the estimated tritium concentrations. The tritium concentrations were then employed to estimate the groundwater age for each monitoring well. Comparative analysis with international datasets suggests that the collected groundwater in the studied areas is likely over a century old. Notably, groundwater ages display significant variations in different locations, even within the same aquifer. These disparities stem from differences in water flow dynamics, recharge rates, and the geological composition of the rocks and sediments through which the water travels. In contrast, water from selected monitoring wells exhibited an age exceeding a few hundred years, categorizing it as ‘dead water’ due to an extended residence time in the aquifer. This research contributes valuable insights into the longevity of groundwater resources, aiding in formulating sustainable water management strategies in arid regions.


Al-Jaseem, Q. K., Almasoud, F. I., Ababneh, A. M., & Al-Hobaib, A. S. (2016, 2016/09/01/). Radiological assessment of water treatment processes in a water treatment plant in Saudi Arabia: Water and sludge radium content, radon air concentrations and dose rates. Science of The Total Environment, 563-564, 1030-1036. https://doi.org/https://doi.org/10.1016/j.scitotenv.2016.04.049 DOI: https://doi.org/10.1016/j.scitotenv.2016.04.049

Aljaloud, K. B., & ElBatouti, M. (2021, 2021/02/01/). Statistical analysis of 222Rn concentration in Zamzam and other water sources in the Kingdom of Saudi Arabia. Heliyon, 7(2), e06057. https://doi.org/https://doi.org/10.1016/j.heliyon.2021.e06057 DOI: https://doi.org/10.1016/j.heliyon.2021.e06057

Allen, M., & Boutt, D. (2023). Environmental Tracers Tritium 3H and SF6 Used to Improve Knowledge of Groundwater Sustainability of a Crystalline Rock Island Aquifer of Tobago, West Indies. Water, 15(24), 4231. https://www.mdpi.com/2073-4441/15/24/4231 DOI: https://doi.org/10.3390/w15244231

Alsharhan, A. S., Rizk, Z. A., Nairn, A. E. M., Bakhit, D. W., & Alhajari, S. A. (2001). Preface. In Hydrogeology of an Arid Region: The Arabian Gulf and Adjoining Areas (pp. 287-309). Elsevier Science B.V. https://doi.org/https://doi.org/10.1016/B978-044450225-4/50000-2 DOI: https://doi.org/10.1016/B978-044450225-4/50012-9

Aly, A. A., Al-Omran, A. M., & Alharby, M. M. (2015, 2015/06/01). The water quality index and hydrochemical characterization of groundwater resources in Hafar Albatin, Saudi Arabia. Arabian Journal of Geosciences, 8(6), 4177-4190. https://doi.org/10.1007/s12517-014-1463-2 DOI: https://doi.org/10.1007/s12517-014-1463-2

Arun, B., Viswanathan, S., Venkatesan, S., Jose, M. T., & Balasubramaniam, V. (2021, 04/29). Study of Triple to Double Coincidence Method for Tritium Measurements. Radiochemistry, 63, 221-226. https://doi.org/10.1134/S1066362221020120 DOI: https://doi.org/10.1134/S1066362221020120

Benaafi, M., & Al-Shaibani, A. (2021). Hydrochemical and Isotopic Investigation of the Groundwater from Wajid Aquifer in Wadi Al-Dawasir, Southern Saudi Arabia. Water, 13(13), 1855. https://www.mdpi.com/2073-4441/13/13/1855 DOI: https://doi.org/10.3390/w13131855

Bethke, C., & Johnson, T. (2008, 05/01). Groundwater Age and Groundwater Age Dating. Annu. Rev. Earth Planet. Sci, 36, 121-152. https://doi.org/10.1146/annurev.earth.36.031207.124210 DOI: https://doi.org/10.1146/annurev.earth.36.031207.124210

El-Taher, A., & Al-Turki, A. (2016, 11/01). Radon activity measurements in irrigation water from Qassim Province by RAD7. Journal of environmental biology, 37, 1299-1302.

El-Taher, A. M., Abojassim, A. A., Najam, L. A., & Mraity, H. A. A. B. (2020). Assessment of Annual effective Dose for Different Age Groups based on Radon Concentrations in the Groundwater of Qassim, Saudi Arabia. Iranian Journal of Medical Physics, 17(1), 15-20. https://doi.org/10.22038/ijmp.2019.37379.1476

Feng, B., Chen, B., Zhao, C., He, L., Tang, F., & Zhuo, W. (2020, 2020/12/01/). Application of a liquid scintillation system with 100-ml counting vials for environmental tritium determination: Procedure optimization, performance test, and uncertainty analysis. Journal of Environmental Radioactivity, 225, 106427. https://doi.org/https://doi.org/10.1016/j.jenvrad.2020.106427 DOI: https://doi.org/10.1016/j.jenvrad.2020.106427

Gomes, A. R., Abrantes, J., Libânio, A., Madruga, M. J., & Reis, M. (2017, 2017/11/01). Determination of tritium in water using electrolytic enrichment: methodology improvements. Journal of Radioanalytical and Nuclear Chemistry, 314(2), 669-674. https://doi.org/10.1007/s10967-017-5456-y DOI: https://doi.org/10.1007/s10967-017-5456-y

Grünenbaum, N., Greskowiak, J., Sültenfuß, J., & Massmann, G. (2020, 2020/08/01/). Groundwater flow and residence times below a meso-tidal high-energy beach: A model-based analyses of salinity patterns and 3H-3He groundwater ages. Journal of Hydrology, 587, 124948. https://doi.org/https://doi.org/10.1016/j.jhydrol.2020.124948 DOI: https://doi.org/10.1016/j.jhydrol.2020.124948

Hoque, M. A., & Burgess, W. G. (2012, 2012/06/11/). 14C dating of deep groundwater in the Bengal Aquifer System, Bangladesh: Implications for aquifer anisotropy, recharge sources and sustainability. Journal of Hydrology, 444, 209-220. https://doi.org/https://doi.org/10.1016/j.jhydrol.2012.04.022 DOI: https://doi.org/10.1016/j.jhydrol.2012.04.022

Jerbi, H., Hamdi, M., Snoussi, M., Abdelmalek, M. B., Jnoub, H., & Tarhouni, J. (2019). Usefulness of historical measurements of tritium content in groundwater for recharge assessment in semi-arid regions: application to several aquifers in central Tunisia. Hydrogeology journal, 27(5), 1645-1660. DOI: https://doi.org/10.1007/s10040-019-01937-w

Jurgens, B. C., Böhlke, J. K., & Eberts, S. M. (2012). TracerLPM (Version 1): An Excel® workbook for interpreting groundwater age distributions from environmental tracer data [Report](4-F3). (Techniques and Methods, Issue. U. S. G. Survey. http://pubs.er.usgs.gov/publication/tm4F3 DOI: https://doi.org/10.3133/tm4F3

Le Nindre, Y.-M., Vaslet, D., Le Métour, J., Bertrand, J., & Halawani, M. (2003, 2003/02/10/). Subsidence modelling of the Arabian Platform from Permian to Paleogene outcrops. Sedimentary Geology, 156(1), 263-285. https://doi.org/https://doi.org/10.1016/S0037-0738(02)00291-9 DOI: https://doi.org/10.1016/S0037-0738(02)00291-9

Mamun, A. (2023a). Enrichment of Low-Level Tritium in Groundwater via an Electrolysis Process for Liquid Scintillation Counting Applications. Geosciences, 13(10), 290. https://www.mdpi.com/2076-3263/13/10/290 DOI: https://doi.org/10.3390/geosciences13100290

Mamun, A. (2023b). Estimation of Tritium Concentration in the Rain- and Groundwater in the Dry River of Hafr Al Batin, Saudi Arabia. Limnological Review, 23(2), 93-107. https://www.mdpi.com/2300-7575/23/2/6 DOI: https://doi.org/10.3390/limnolrev23020006

Mamun, A., & Alazmi, A. S. (2022a). Advancement of a Liquid Scintillation Counter and Semiconductor Alpha Spectroscopy Detector to Estimate the Radon Concentration in Groundwater. Water, 14(23), 3849. https://www.mdpi.com/2073-4441/14/23/3849 DOI: https://doi.org/10.3390/w14233849

Mamun, A., & Alazmi, A. S. (2022b). Investigation of Radon in Groundwater and the Corresponding Human-Health Risk Assessment in Northeastern Saudi Arabia. Sustainability, 14(21). DOI: https://doi.org/10.3390/su142114515

Mamun, A., & Alazmi, A. S. (2023). Risk Assessment of Radon Exposure by Ingestion and Inhalation of Groundwater Within Different Age Groups. Groundwater Monitoring & Remediation, 43(1), 69-77. https://doi.org/https://doi.org/10.1111/gwmr.12558 DOI: https://doi.org/10.1111/gwmr.12558

Morgenstern, U., & Taylor, C. B. (2009, Jun). Ultra low-level tritium measurement using electrolytic enrichment and LSC. Isotopes Environ Health Stud, 45(2), 96-117. https://doi.org/10.1080/10256010902931194 DOI: https://doi.org/10.1080/10256010902931194

Muhammad, B., Nasiru, R., & Sumaila, A. (2013, 11/30). Procedure for Radio Dating of Water Using Nuclear Hydrological Isotopes Techniques. IOSR Journal of Applied Physics, 6. https://doi.org/10.9790/4861-06214953 DOI: https://doi.org/10.9790/4861-06214953

Okofo Boansi, L., Adonadaga, M.-G., & Martienssen, M. (2022, 04/01). Groundwater age dating using multi-environmental tracers (SF6, CFC-11, CFC-12, δ18O, and δD) to investigate groundwater residence times and recharge processes in Northeastern Ghana. Journal of Hydrology, 610, 127821. https://doi.org/10.1016/j.jhydrol.2022.127821 DOI: https://doi.org/10.1016/j.jhydrol.2022.127821

Pimenta, R., Rocha, Z., Viana, J., Gardini, G., Duarte, M., & Moreira, R. (2017). USE OF ENVIRONMENTAL TRITIUM IN GROUNDWATER DATING IN THE UPPER JEQUITIBÁ RIVER BASIN, MUNICIPALITY OF SETE LAGOAS, MINAS GERAIS, BRAZIL.

Plassin, S., Koch, J., Paladino, S., Friedman, J. R., Spencer, K., & Vaché, K. B. (2020, 2020/03/06). A socio-environmental geodatabase for integrative research in the transboundary Rio Grande/Río Bravo basin. Scientific Data, 7(1), 80. https://doi.org/10.1038/s41597-020-0410-1 DOI: https://doi.org/10.1038/s41597-020-0410-1

Plummer, L. N., & Glynn, P. D. (2013). Radiocarbon dating in groundwater systems. Chapter 4. IAEA; Vienna (International Atomic Energy Agency (IAEA)); International Atomic Energy Agency, Division of Physical and Chemical Sciences, Vienna (Austria). https://doi.org/https://doi.org/ Other: ISBN 978-92-0-137210-9; TRN: XA13M0262055166 INIS

Post, V. E. A., Vandenbohede, A., Werner, A. D., Maimun, & Teubner, M. D. (2013, 2013/07/01/). Groundwater ages in coastal aquifers. Advances in Water Resources, 57, 1-11. https://doi.org/https://doi.org/10.1016/j.advwatres.2013.03.011 DOI: https://doi.org/10.1016/j.advwatres.2013.03.011

Sadeak, S., Al Amin, M., Chowdhury, T., Mia, M. B., Alam, M. J., Ahmed, K. M., & Khan, M. R. (2023, 2023/02/01/). Comparison of the groundwater recharge estimations of the highly exploited aquifers in Bangladesh and their sustainability. Groundwater for Sustainable Development, 20, 100896. https://doi.org/https://doi.org/10.1016/j.gsd.2022.100896 DOI: https://doi.org/10.1016/j.gsd.2022.100896

Salvato, C. (2003). The role of microâ€strategies in the engineering of firm evolution. Journal of management studies, 40(1), 83-108. DOI: https://doi.org/10.1111/1467-6486.t01-2-00005

Sánchez-Úbeda, J. P., López-Chicano, M., Calvache, M. L., Purtschert, R., Engesgaard, P., Martín-Montañés, C., Sültenfuβ, J., & Duque, C. (2018, 2018//). Groundwater Age Dating in Motril-Salobreña Coastal Aquifer with Environmental Tracers (δ18O/δ2H, 3H/3He, 4He, 85Kr, and 39Ar). Groundwater and Global Change in the Western Mediterranean Area, Cham. DOI: https://doi.org/10.1007/978-3-319-69356-9_33

Schlosser, P., Stute, M., Dörr, H., Sonntag, C., & Münnich, K. O. (1988, 1988/08/01/). Tritium/3He dating of shallow groundwater. Earth and Planetary Science Letters, 89(3), 353-362. https://doi.org/https://doi.org/10.1016/0012-821X(88)90122-7 DOI: https://doi.org/10.1016/0012-821X(88)90122-7

USEPA. (2000). National Primary Drinking Water Regulations; Radionuclides; Final Rule. Fed. Reg., 65(236), 76708.

Vincent, P. (2008). Saudi Arabia: an environmental overview (1st Edition ed.). CRC Press. https://doi.org/https://doi.org/10.1201/9780203030882 DOI: https://doi.org/10.1201/9780203030882.ch1

Mamun, A. (2024). Evaluating groundwater residence time in arid aquifers: a crucial metric for monitoring sustainable water management. Acque Sotterranee - Italian Journal of Groundwater, 13(4). https://doi.org/10.7343/as-2024-755

Downloads

Download data is not yet available.

Citations