Depletion curve analysis and assessment of chemical indicators for pollution detection in Seraidi springs (Annaba, Algeria)

Submitted: 16 April 2024
Accepted: 2 February 2025
Published: 31 March 2025
Abstract Views: 16
PDF: 7
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

In recent years, Algeria has faced increasing water stress due to climate change and rising human activities. In the Seraidi region, the overexploitation of water springs has made these resources increasingly vulnerable. This study has two main objectives: (1) to assess the depletion of springs in the Edough Massif during low-flow periods and estimate the water reserves within the surrounding aquifer, and (2) to examine changes in the pollution indicator levels of these springs. The average flow rates of these springs are below 1 L/s, categorizing most Seraidi springs as magnitude 6. The primary objective of this study is to apply Maillet’s depletion model to analyze the flow of twelve selected springs during the low-water period (May-October 2018). The model shows a strong fit to the data, as indicated by an R2 value ranging from 0.62 to 0.98. This model facilitates the prediction of underground water reserve volumes during low-flow periods and helps characterize the spring discharge regime. The results indicate that the springs in Seraidi are perennial, with recession coefficients ranging from 0.0011 d–1 to 0.0365 d–1, ensuring a consistent water supply in the study area. However, the flow rates remain very low during low-water periods. This study also monitored nine pollution indicator elements, including phosphate (PO43–), metals (Fe3+, Cu2+, Ni2+, Al3+, Mn2+), and nitrogen compounds (NO3, NO2, NH4+), which exhibit varying concentrations and distributions in the study area. Fe3+ concentrations ranged from 0 to 0.53 mg/L, exceeding the recommended limit of 0.3 mg/L in 2015. Ni2+ concentrations exceeded Algeria’s drinking water standards (0.02 mg/L) in some areas in 2018, with a peak value of 0.35 mg/L observed in Ain Bouhadada. Furthermore, the study highlights a notable rise in nickel levels in certain springs, primarily due to anthropogenic activities, which threaten the water quality of springs. However, the presence of heavy metals in the water, even at concentrations below drinking water standards, raises significant public health concerns. This study highlights the vulnerability of Seraidi’s water springs due to low flow rates and increasing pollution levels. Although the springs are perennial, their discharge becomes critically low during dry periods. The rising concentrations of pollutants, particularly heavy metals such as nickel and iron, emphasize the adverse impact of human activities on water quality. These findings underscore the urgent need for sustainable water management strategies to protect this vital resource and ensure the region’s water security.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Abbassene, F., Chazot, G., Bellon, H., Bruguier, O., Ouabadi, A., Maury, R.C., Devéchère, J., Bosch, D., & Monié, P. (2016). A 17 Ma onset for the post-collisional K-rich calc-alkaline magmatism in the Maghrebides: evidence from Bougaroun (northeastern Algeria) and geodynamic implications. Tectonophysics, 674, 114-134. DOI: https://doi.org/10.1016/j.tecto.2016.02.013
Abbassene, F., Chazot, G., Bellon, H., & Maury, R.C. (2019). New chronostratigraphic constraints on the emplacement of Miocene high-K calc-alkaline igneous rocks from West Edough-Cap de Fer, NE Algeria. Arabian Journal of Geosciences, 12(2). DOI: https://doi.org/10.1007/s12517-018-4196-9
Abdin, E. C., Taddia, G., Gizzi, M., & Lo Russo, S. (2021). Reliability of spring recession curve analysis as a function of the temporal resolution of the monitoring dataset. Environmental Earth Sciences, 80(7), 2-12. https://doi.org/10.1007/s12665-021-09529-2 DOI: https://doi.org/10.1007/s12665-021-09529-2
Ahmed-Said, Y., Leake, B.E., & Rogers, G. (1993). The petrology, geochemistry, and petrogenesis of the Edough igneous rocks, Annaba, NE Algeria. Journal of African Earth Sciences (and the Middle East), 17, 111-123. DOI: https://doi.org/10.1016/0899-5362(93)90027-N
Aissa, D. E. (1996). Les minéralisations du massif de l’Edough Annaba (Sb, Au, Zn, Pb, Bi, W, Sn, Li, F, REE, Fe): caractérisation géologique, gîtologique, géochimique, minéralogique, métallogénique, et évolution des phases fluides mises en jeu. Mineralizations of the Edough Massif, Annaba (Sb, Au, Zn, Pb, Bi, W, Sn, Li, F, REE, Fe): Geological, Ore Deposit, Geochemical, Mineralogical, Metallogenic Characterization, and Evolution of Fluid Phases Involved.Doctoral thesis, USTBH Alger.
Alem, D., Benyoucef, A., & Cheikh, B. S. (1991). Contribution to the hydrogeological and hydrochemical study of the Edough Massif: A case study of the springs in the Seraidi region. Master's thesis, Badji Mokhtar University Annaba.
Auzende, J.-M., Bonnin, J., & Olivet, J.L. (1975). La marge nord-africaine considérée comme marge active.The North African Margin Considered as an Active Margin. Bulletin de la Société Géologique de France, 7, 486–495. DOI: https://doi.org/10.2113/gssgfbull.S7-XVII.4.486
Baechler, F.E., Cross, H.J., & Baechler, L. (2019). The geology and hydrogeology of springs on Cape Breton Island, Nova Scotia, Canada: an overview. Atlantic Geology, 55, 137-161. https://doi.org/10.4138/atlgeol.2019.004 DOI: https://doi.org/10.4138/atlgeol.2019.004
Belanteur, O., Bellon, H., Maury, R.C., Ouabadi, A., Coutelle, A., Semroud, B., Megartsi, M., & Fourcade, S. (1995). Le magmatisme miocène de l’Est de l’Algérois: géologie, géochimie et géochronologie 40K–40Ar.The Miocene Magmatism of Eastern Algiers: Geology, Geochemistry, and 40K–40Ar Geochronology. Comptes Rendus de l’Académie des Sciences Paris, 321, 489-496.
Benouara, N., Laraba, A., & Rachedi, L. H. (2016). Assessment of groundwater quality in the Seraidi region (north-east of Algeria) using NSF-WQI. Water Science & Technology: Water Supply, 16(4), 1132–1137. https://doi.org/10.2166/ws.2016.030 DOI: https://doi.org/10.2166/ws.2016.030
Bense, V.F., Gleeson, T., Loveless, S.E., Bour, O., & Scibek, J. (2013). Fault zone hydrogeology. Earth-Science Reviews, 127, 171-192. DOI: https://doi.org/10.1016/j.earscirev.2013.09.008
Brehme, M., Blocher, G., Cacace, M., Kamah, Y., Sauter, M., Zimmermann, G. (2016). Permeability distribution in the Lahendong geothermal field: A blind fault capturedby thermal–hydraulic simulation. Environ. Earth Sci. 75. https://doi.org/10.1007/s12665-016-5878-9 DOI: https://doi.org/10.1007/s12665-016-5878-9
Brunel, M., Hammor, D., Misseri, M., Gleizes, G., & Bouloton, J. (1988). Cisaillements synmétamorphes avec transport vers le Nord-Ouest dans le massif cristallin de l'Edough (Wilaya d'Annaba, Algérie) : Une faille normale ductile hercynienne ?. Syn-metamorphic Shear Zones with Northwestward Transport in the Edough Crystalline Massif (Annaba Province, Algeria): A Hercynian Ductile Normal Fault? . Comptes Rendus de l'Académie des Sciences de Paris, 306(II), 1039-1045.
Bouillin, J.P. (1979). La transversale de Collo et d'El-Milia (Petite Kabylie): une région-clef pour l'interprétation de la tectonique alpine de la chaîne littorale d'Algérie. A Key Region for the Interpretation of the Alpine Tectonics of the Algerian Coastal Range. Mémoire de la Société Géologique de France (57(135), 84).
Bouillin, J.P. (1986). Le "bassin maghrébin": une ancienne limite entre l'Europe et l'Afrique à l'Ouest des Alpes. The "Maghreb Basin": An Ancient Boundary Between Europe and Africa West of the Alps. Bulletin de la Société Géologique de France, 8(II), 547-558. DOI: https://doi.org/10.2113/gssgfbull.II.4.547
Caby, R., & Hammor, D. (1992). Le massif de l'Edough (Algérie): Un "Métamorphic Core Complex" d'âge miocène dans les Maghrébides. A Miocene "Metamorphic Core Complex" in the Maghrebides. Comptes Rendus de l'Académie des Sciences de Paris, 314(II), 829-835.
Carminati, E., Lustrino, M., & Doglioni, C. (2012). Geodynamic evolution of the central and western Mediterranean: Tectonics vs. igneous petrology constraints. Tectonophysics, 57(9), 173-192. DOI: https://doi.org/10.1016/j.tecto.2012.01.026
Citrini, A., Camera, C., & Beretta, G.P. (2020). Nossana spring (northern Italy) under climate change: Projections of future discharge rates and water availability. Water, 12(2), 387. https://doi.org/10.3390/w12020387 DOI: https://doi.org/10.3390/w12020387
Cohen, C.R. (1980). Plate tectonic model for the Oligo-Miocene evolution of the western Mediterranean. Tectonophysics, 68, 283-311. DOI: https://doi.org/10.1016/0040-1951(80)90180-8
Cosandey, C., & Robinson, M. (2000). Hydrologie continentale. Continental Hydrology. Revue Géographique de l’Est, 42(4). https://doi.org/10.4000/rge.2715 DOI: https://doi.org/10.4000/rge.2715
Costanza, C., & Walter, D. (2000). Groundwater yield, climatic changes, and recharge variability: considerations out of the modeling of a spring in the Umbria-Marche Apennines. Hydrogeology, 4, ed. BRGM, Orléans, pp. 11-25. ISSN: 0246-1641.
Dewandel, B., Lachassagne, P., Bakalowicz, M., Weng, P., & Al-Malki, A. (2003). Evaluation of aquifer thickness by analyzing recession hydrographs. Application to the Oman ophiolite hard-rock aquifer. Journal of Hydrology, 274(1–4), 248–269. https://doi.org/10.1016/s0022-1694(02)00418-3 DOI: https://doi.org/10.1016/S0022-1694(02)00418-3
Diodato, N., Ljungqvist, F. C., Fiorillo, F., Esposito, L., Ventafridda, G., & Bellocchi, G.(2023). Climatic fingerprint of spring discharge depletion in the southern Italian Apennines from 1601 to 2020 CE. Environmental Research Communications, 4(12), 1-15. https://doi.org/10.1088/2515-7620/ DOI: https://doi.org/10.1088/2515-7620/acae23
Djorfi, S., Guechi, S., Beloulou, L., & Lahmar, K. (2017). On the water quality degradation of the Seraïdi springs, Edough Mountain (NE Algeria). Journal of Biodiversity and Environmental Sciences (JBES), 10(3), 194-203.
Durand-Delga, M. (1980). The tectonic framework of the Western Mediterranean. Earth-Science Reviews, 16, 1-42.
Fiorillo, F., Esposito, L., & Guadagno, F.M. (2007). Analyses and forecast of water resources in an ultra-centenarian spring discharge series from Serino (Southern Italy). Journal of Hydrology, 336(1-2), 125-138. https://doi.org/10.1016/j.jhydrol.2006.12.016 DOI: https://doi.org/10.1016/j.jhydrol.2006.12.016
Gattinoni, P., & Francani, V. (2010). Depletion risk assessment of the Nossana Spring (Bergamo, Italy) based on the stochastic modeling of recharge. Hydrogeology Journal, 18(2), 325–337. https://doi.org/10.1007/s10040-009-0530-3 DOI: https://doi.org/10.1007/s10040-009-0530-3
Gischer, L., Hallot, E., Houbrechts, G., Ampenhout, J.V., & Petit, F. (2012). Analyse des débits en période de tarissement: essai d’une typologie régionale appliquée à des rivières du bassin de Lameuse (Belgique), Analysis of Discharges During Drought Periods: A Regional Typology Attempt Applied to Rivers in the Meuse Basin (Belgium). Bulletin de la Société Géographique de Liège, 59(2), 59-80.
Gizzi, M., Mondani, M., Taddia, G., Suozzi, E., & Lorusso, S. (2022). Aosta Valley Mountain Springs: A Preliminary Analysis for Understanding Variations in Water Resource Availability under Climate Change. Water, 14(1004). https://doi.org/10.3390/w14071004 DOI: https://doi.org/10.3390/w14071004
Gleizes, G., Bouleton, J., Bossière, G., & Collomb, P. (1988). Données lithologiques et pétrostructurales nouvelles sur le massif cristallophyllien de l'Edough (Est Algérien), New Lithological and Petrostructural Data on the Crystallophyllian Massif of Edough (Eastern Algeria) . Comptes Rendus de l’Académie des Sciences, Paris, 306(II), 1001-1008.
Hammor, D. (1992). Du Panafricain au Miocène: 600 millions d'années d'évolution polycyclique dans le massif de l'Edough (Algérie nord-orientale) retracés par la pétrologie, la tectonique et la géochronologie (U-Pb, Rb-Sr, Sm-Nd et 40Ar/39Ar), From the Pan-African to the Miocene: 600 Million Years of Polycyclic Evolution in the Edough Massif (Northeastern Algeria) Traced by Petrology, Tectonics, and Geochronology (U-Pb, Rb-Sr, Sm-Nd, and 40Ar/39Ar). Doctoral thesis. Univ. Montpellier, France.
Hani, A., Djabri, L., & Mania, J. (1997). Étude des caractéristiques physico-chimiques du massif cristallophyllien de Séraïdi (nord-est Algérien), Study of the Physicochemical Characteristics of the Crystalline Massif of Seraidi (Northeastern Algeria). Hard Rock Hydrosystems. Proceedings of Rabat Symposium S2, May 1997, IAHS Publication 241, 47-59.
Hani, A., Djabri, L., Mania, J., & Majour, H. (2002). Evolution des caractéristiques physico-chimiques des eaux souterraines du massif cristallophylien de l’Edough (Annaba, Algérie), Evolution of the Physicochemical Characteristics of Groundwater in the Crystalline Massif of Edough (Annaba, Algeria) . 19ème colloque de géologie africaine, El Jadida (Maroc), pp. 100.
Hadj Zobir, S., & Mocek, B. (2012). Determination of the source rocks for the diatexites from the Edough Massif (Annaba, NE Algeria). Journal of African Earth Sciences, 69, 26–33. https://doi.org/10.1016/j.jafrearsci.2012.04.004 DOI: https://doi.org/10.1016/j.jafrearsci.2012.04.004
Hilly, J. (1962). Étude géologique du massif de l'Edough et du Cap de Fer (Est-Constantinois),Geological Study of the Edough Massif and Cap de Fer (Eastern Constantine) Université, Faculté des Sciences.
Hunt, B. (2004). Spring-Depletion Solution. Journal of Hydrologic Engineering, 9(2), 144. https://doi.org/10.1061/(ASCE)1084-0699(2004)9:2(144) DOI: https://doi.org/10.1061/(ASCE)1084-0699(2004)9:2(144)
Keegan-Treloar, R., Werner, A.D., Irvine, D.J., & Banks, E.W. (2021). Application of Indicator Kriging to hydraulic head data to test alternative conceptual models for spring source aquifers. J. Hydrol, 601, 126808. https://doi.org/10.1016/j.jhydrol.2021.126808 DOI: https://doi.org/10.1016/j.jhydrol.2021.126808
Keegan-Treloar, R., Solorzano-Rivas, S. C., Irvine, D. J., & Werner, A. D. (2022). Fault-controlled springs: A review. Earth-Science Reviews, 230, 1–19. https://doi.org/10.1016/j.earscirev.2022.104058 DOI: https://doi.org/10.1016/j.earscirev.2022.104058
Khaldi, F., Smati, H., Grara, N., Smati, N., Maizi, N., Boukehili, K., & Gheid, A. (2018). Mesure et contrôle des propriétés de quelques eaux souterraines de l’agglomération d’Ouled Driss, Algérie. Measurement and Control of the Properties of Some Groundwater in the Ouled Driss Urban Area, Algeria. Environ Risque Santé, 17, 253-261. https://doi.org/10.1684/ers.2018.1157
Laouar, R., Boyce, A.J., Ahmed-Said, Y., Ouabadi, A., Fallick, A.E., & Toubal, A. (2002). Stable isotope study of the igneous, metamorphic, and mineralized rocks of the Edough complex, Annaba, Northeast Algeria. Journal of African Earth Sciences, 35(2), 271-283. https://doi.org/10.1016/S0899-5362(02)00037-4 DOI: https://doi.org/10.1016/S0899-5362(02)00037-4
Laouar, R., Boyce, A.J., Arafa, M., Ouabadi, A., & Fallick, A.E. (2005). Petrological, geochemical, and stable isotope constraints on the genesis of the Miocene igneous rocks of Chetaibi and Cap de Fer (NE Algeria). Journal of African Earth Sciences, 41(5), 445-465. https://doi.org/10.1016/j.jafrearsci.2005.06.002 DOI: https://doi.org/10.1016/j.jafrearsci.2005.06.002
Lang, C., & Gille, E. (2006). Une méthode d’analyse du tarissement des cours d’eau pour la prévision des débits d’étiage. A Method for Analyzing Stream Drying for Low Flow Forecasting . Norois, 201, 31–43. https://doi.org/10.4000/norois.1743 DOI: https://doi.org/10.4000/norois.1743
Lang, C. (2007). Étiages et tarissements : vers quelles modélisations ? L’approche conceptuelle et l’analyse statistique en réponse à la diversité spatiale des écoulements en étiage des cours d’eau de l’Est français Low Flows and Stream Drying: Towards Which Models? The Conceptual Approach and Statistical Analysis in Response to the Spatial Diversity of Low Flow Regimes in Rivers of Eastern France. https://theses.hal.science/tel-00534656
Majour, H., Hani, H., Khanchoul, K., & Djabri, L. (2008). Identification des facteurs de variation de chimisme de l’eau dans un milieu cristallin. Identification of the Factors of Water Chemistry Variation in a Crystalline Environment. Bulletin des Sciences Géographiques, 21.
Majour, H. (2010). Qualité des eaux du massif de l’Edough et de son piedmont sud «Berrahal»: Apport des éléments majeurs et traces dans l’identification d’une pollution industrielle (Massif de l’Edough et Plaine de Berrahal). Water Quality of the Edough Massif and Its Southern Foothills 'Berrahal': Contribution of Major and Trace Elements in Identifying Industrial Pollution (Edough Massif and Berrahal Plain). DoctoralThesis, Badji Mokhtar University Annaba.
Manga, M. (2001). Origin of postseismic hydrological changes inferred from field observations and modeling. Journal of Geophysical Research: Solid Earth, 106(B7), 16349-16363.
Marignac, Ch. (1985). La minéralisation filonienne d’Ain Barbar. Un exemple d’hydrothermalisme lié à l’activité géothermique alpine en Algérie du nord. The Vein Mineralization of Ain Barbar: An Example of Hydrothermalism Linked to Alpine Geothermal Activity in Northern Algeria. Doctoral thesis (2 tomes). I.N.P., Lorraine Nancy.
Maury, R.C., Fourcade, S., Coulon, C., Bellon, H., Coutelle, A., Ouabadi, A., Semroud, B., Megartsi, M.H., Cotten, J., & Belanteur, O. (2000). Post-collisional Neogene magmatism of the Mediterranean Maghreb margin: a consequence of slab breakoff. CR Acad. Sc. Série II A: Earth and Planetary Science, 331, 159-173. DOI: https://doi.org/10.1016/S1251-8050(00)01406-3
Mitchell, J.G., Ineson, P.R., & Miller, J.A. (1988). Radiogenic argon and major-element loss from biotite during natural weathering: A geochemical approach to the interpretation of potassium-argon ages of detrital biotite. Chemical Geology: Isotope Geoscience, 72, 111-126. DOI: https://doi.org/10.1016/0168-9622(88)90060-7
Penven, M.J., & Zimmermann, J.L. (1986). A Langhian K-Ar age of calc-alkaline plutonism in Kabylie de Collo (Algeria). Comptes Rendus de l’Académie des Sciences Paris, 303, 403-406.
Pandit, A., Batelaan, O., Pandey, V.P., & Adhikari, S. (2024). Depleting spring sources in the Himalayas: Environmental drivers or just perception?. Journal of Hydrology: Regional Studies, 53(101752), 1-20. https://doi.org/10.1016/j.ejrh.2024.101752 DOI: https://doi.org/10.1016/j.ejrh.2024.101752
Poudel, D.D., & Duex, T.W. (2017). Vanishing springs in Nepalese mountains: Assessment of water sources, farmers' perceptions, and climate change adaptation. Mountain Research and Development, 37(1), 35-46. https://doi.org/10.1659/MRD-JOURNAL-D-16-00039.1 DOI: https://doi.org/10.1659/MRD-JOURNAL-D-16-00039.1
Thapa, R.S., Subedi, R., Tiwari, K.R., Desai, J., Rijal, M.L., & Kandel. (2023). Identifying potential recharge areas of mountain springs through hydrogeological mapping. Banko Janakari, 33(1), 3-15. https://doi.org/10.3126 DOI: https://doi.org/10.3126/banko.v33i1.55463
Vila, J.M. (1970). Le Djebel Edough; un massif cristallin externe du Nord-Est de la Berberie. An External Crystalline Massif of the Northeastern Berberia. Bulletin de la Société Géologique de France, 5, 805-812. DOI: https://doi.org/10.2113/gssgfbull.S7-XII.5.805
Wildi, W. (1983). La chaîne tello-rifaine (Algérie, Maroc, Tunisie). Étude structurale, stratigraphique et paléogéographique. The Tell-Rif Chain (Algeria, Morocco, Tunisia): Structural, Stratigraphic, and Paleogeographic Study. Revue de Géologie Dynamique et de Géographie Physique, 24(3), 201-297.
WHO (2011). Guidelines for drinking-water quality, 4th edition. World Health Organization, Geneva, Switzerland. ISBN 978 924 154815 1. Available at: http://apps.who.int/iris/bitstream/10665/44584/1/9789241548151_eng.pdf
WHO (2004). Monochloramine in drinking-water. Background document for development of WHO guidelines for drinking-water quality. World Health Organization, Geneva, Switzerland (WHO/SDE/WSH/03.04/67). Available at: www.who.int/water_sanitation_health/water-quality/guidelines/chemicals/chloramine-background.pdf

How to Cite

Guechi, S., & Beloulou, L. (2025). Depletion curve analysis and assessment of chemical indicators for pollution detection in Seraidi springs (Annaba, Algeria). Acque Sotterranee - Italian Journal of Groundwater, 14(1). https://doi.org/10.7343/as-2025-770

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.