Mapping the intrinsic potential of water infiltration in urban subsurface: feedback from France

Submitted: 30 April 2024
Accepted: 2 August 2024
Published: 30 September 2024
Abstract Views: 205
PDF: 146
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

In a context of increasing urbanization, with strong soil sealing, and with an increase in extreme weather events, the management of rainwater in urban areas is becoming a major issue. In order to improve water resource management and to prevent urban floods, more and more cities are considering or already implementing water infiltration systems. Infiltration of water is not possible anywhere due to natural and/or anthropic reasons. In this frame, the intrinsic infiltration capacity of the subsurface is one key natural parameter. Global maps are needed to build territorial strategies. In France, a lot of studies are available but a national methodological framework for mapping this index does not exist. In this paper, we analyse various studies carried out in France for such mapping and compare the methods with examples in other countries. Most of the French studies combine a Multi-Criteria Analysis (MCA) and a Geographic Information System (GIS) spatial analysis. The criteria include geological, hydrogeological and geomorphological parameters. The PHOEBUS method developed on Rennes Metropolis seems the most relevant and replicable one to provide a common framework at French scale. It takes into account 7 criteria, including rock/soil permeability, topographic slope and thickness of the unsaturated zone. The obtained maps may be used as such, modified by integrating sealed surfaces or crossed with other criteria linked to the urban environment (e.g. sealed surfaces, soil pollution, heat islands). They provide a decision support tool for urban planning. In particular, they are useful to improve rainwater management, but also in the elaboration of desealing or renaturation strategies. It seems essential to act in concertation with local stakeholders to identify their needs and the specificities of the territory.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Ashley R., Lundy L., Ward S., Shaffer P., Walker L., Morgan C., Saul A., Wong T., Moore S. (2013). Water-sensitive urban design: opportunities for the UK. Proceedings of the ICE-Municipal Engineer, 166 (2), 65–76. https://doi.org/10.1680/muen.12.00046 DOI: https://doi.org/10.1680/muen.12.00046
Barrière J., Pinson S., Le Coent P., Farina G., Hérivaux C., Neverre N., Rame E., Saltel M. (2024). Développement d'outils d'aide à la décision pour la mise en place d'une stratégie d'infiltration et de stockage des eaux pluviales à échelle de Bordeaux Métropole. Final report V1. BRGM/RP-73219-FR, 111 p.
Belbeze S. avec la collaboration de Assy Y., Le Cointe P. et Rame E. (2022). CAPacité d'Infiltration des eaux pluviales du territoire de TOULouse Métropole (CAPITOUL). Final report V1. BRGM/RP-71904-FR, 72 p., 45 fig., 14 tab.
Bierry A. and Lavorel S. (2016) Implication des parties prenantes d’un projet de territoire dans l’élaboration d’une recherche à visée opérationnelle, Sciences Eaux & Territoires, 4(21): 18-23, https://doi.org/10.3917/set.021.0018 DOI: https://doi.org/10.3917/set.021.0018
Bonneau J., Branger F., Castebrunet H., Lipeme Kouyi G. (2022). Modélisation de scénarios de gestion des eaux pluviales à la source face aux changements globaux. Livrable du projet Conscequans. INRAE. 2022. hal-03993757.
Bosserelle A.L., Morgan L.K., Hughes M.W. (2022). Groundwater Rise and Associated Flooding in Coastal Settlements Due To Sea-Level Rise: A Review of Processes and Methods. Earth’s Future, 10 (7), doi.org/10.1029/2021EF002580 DOI: https://doi.org/10.1029/2021EF002580
Bouvard J. (2021). La désimperméabilisation des sols sur les villes de Libourne et Angoulême. Rapport de fin d’études de l’ENTPE, Sciences de l’ingénieur [physics]. dumas-03611435.
Branchu P., Marseille, F., Béchet B., Bessière J.-P., Boithias L, Duvigneau C., Genesco P., Keller C., Lambert M.-L., Laroche B., Le Guern C., Lemot A., Métois R., Néel C., Sheriff R. (2021). MUSE. Intégrer la multifonctionnalité dans les documents d’urbanisme. 155 p. ADEME Grant 1717C0004.
Cerema (2020). Guide du zonage pluvial. De son élaboration à sa mise en œuvre. Collection : Références. ISBN : 978-2-37180-459-3.
Chikhi F., Li C., Xilin Z., Ji Q. (2023). Review of Sponge City implementation in China: performance and policy. Water Science & Technology. 88. 10.2166/wst.2023.312. DOI: https://doi.org/10.2166/wst.2023.312
Chui T. F. M., Liu X., Zhan W. (2016). Assessing Cost-Effectiveness of Specific LID Practice Designs in Response to Large Storm Events. J. Hydrol. 533, 353–364. doi:10.1016/j.jhydrol.2015.12.011. DOI: https://doi.org/10.1016/j.jhydrol.2015.12.011
Conil P., Plat E. (2015). Aptitude des sols à l’infiltration des eaux pluviales sur le territoire de Nantes Métropole. Final report. BRGM/RP-65025-FR, 63 p., 32 ill., 2 ann.
Desprats J.F., Dutartre P. (1994). Régionalisation par télédétection des mesures pour l’évaluation des ressources en eau souterraine. Approche cartographique des potentialités d’infiltration. Final report BRGM/RR-37922-FR. 35 p., 18 fig., 3 tab.
Dornier V., Desprats J.F., King C. (2001). Projet PACTES – Module : Analyse des états de surface des bassins versants. Possibilités de passage à l’infiltrabilité localisée. Final report BRGM/RP-51324-FR, 31 p. 12 fig., 8 tab.
Fletcher T. D., Shuster W., Hunt W. F., Ashley R., Butler D., Arthur, S., Viklander M. (2015). SUDS, LID, BMPs, WSUD and more–The evolution and application of terminology surrounding urban drainage. Urban water journal, 12(7), 525-542. https://doi.org/10.1080/1573062X.2014.916314. DOI: https://doi.org/10.1080/1573062X.2014.916314
Gerolin A., Dumont E., Degrave M., Pétillon G., LeNouveau N. (2016). Stormwater infiltration capacity maps: a brief international overview to question French practices. Novatech 2016-9èmeConférence internationale sur les techniques et stratégies pour la gestion durable de l‘Eau dans la Ville / 9th International Conference on planning and technologies for sustainable management of Water in the City, June 2016, Lyon, France. hal-03322015.
Grand Lyon (2017). Projet ville perméable. Comment réussir la gestion des eaux pluviales dans nos aménagements ? Guide d’aide à la conception et à l’entretien.
Le Guern C, B. Béchet, C. Duvigneau, H. Capiaux, T. Lebeau, C. Keller, J. Diaz-Sanz, J. Moulin, R. Sheriff, R. Métois, B. Laroche, C. Schwartz, C. Franck-Néel, P. Branchu, F. Marseille (2022). Indicators of urban soil multifunctionality as input to assess soil health, 11th conference on soils of urban, industrial, traffic and mining area (SUITMA 11), Soil and the food, water, energy nexus, Berlin (D), 5-9 sept. 2022.
Lentini A., Galve Arnedo J. P. (2022). Preliminary identification of areas suitable for Sustainable Drainage Systems and Managed Aquifer Recharge to mitigate stormwater flooding phenomena in Rome (Italy). Acque Sotterranee - Italian Journal of Groundwater, 11(4), 43 – 53. https://doi.org/10.7343/as-2022-590. DOI: https://doi.org/10.7343/as-2022-590
Kwicklis E., Witkowski M., Birdsell K., Newman B., Walther D. (2005). Development of an infiltration map for the Los Alamos Area, New Mexico. Vadose Zone Journal, 4(3), 672-693. https://doi.org/10.2136/vzj2004.0176 DOI: https://doi.org/10.2136/vzj2004.0176
Mao X., Jia H., Yu S.L. (2017). Assessing the Ecological Benefits of Aggregate LID-BMPs through Modelling. Ecol. Model. 353, 139–149. doi:10.1016/j.ecolmodel.2016.10.018. DOI: https://doi.org/10.1016/j.ecolmodel.2016.10.018
Mardhel V., Pinson S., Allier D. (2021). Description of an indirect method (IDPR) to determine spatial distribution of infiltration and runoff and its hydrogeological applications to the French territory. Journal of Hydrology, 592. https://doi.org/10.1016/j.jhydrol.2020.125609 DOI: https://doi.org/10.1016/j.jhydrol.2020.125609
Petter C. (2013) – Définition des potentialités d’infiltration des eaux pluviales sur le territoire de la Communauté Urbaine de Strasbourg (67) au regard des contraintes locales – Rapport final, Antea Group. A69568/A, 41 pages, 3 fig., 2 tab., 10 ann.
Pierlot D, Ahyerre M., Kovacs Y. (2016). Cartographie indicative d’aptitude à l’infiltration à l’échelle de Bordeaux Métropole. Techniques Sciences Méthodes n°11. 10 p., 3 fig. 1 tab. DOI: https://doi.org/10.1051/tsm/201611121
Pierlot D., Castillon S. et Laborde R. (2011). Cartographie de l'infiltrabilité dans les sols du département des Hauts-de-Seine. Conseil Départemental des Hauts-de-Seine. 40 p., 11 fig., 3 ann.
Pinson S., Bault V., Braibant G., Ridel L., Batut K., Bodéré G., Bentivegna G., Decouchon E., Boucherat Y., Koch F., Breuil C., Grandemange A. (2019). Profondeur des entités Hydrogéologiques et évaluation des cOntraintes à l’infiltration des Eaux pluviales urBaines sUr le territoire de RenneS Métropole - Projet PHOEBUS. Final report (in French) BRGM/RP-68599-FR, 74 p., 45 ill., 3 ann.
Poyat Y (2021). Cartographie du potentiel de désimperméabilisation des sols (Renens). Note méthodologique non référencée. 4 p., 3 fig.
Prézeau F., Bruhat C., Leduc T., Musy M., Clozel B., Rodler, A., Le Guern C. (2024). DésiVille : où et comment désimperméabiliser les sols ? Cartographie du potentiel de désimperméabilisation des sols à l’échelle territoriale et locale. Guide méthodologique. ADEME Grant number 21DAD0029.
Shaban A., Khawlie M., Abdallah C. (2006). Use of remote sensing and GIS to determine recharge potential zones: the case of Occidental Lebanon. Hydrogeology Journal, 14, 433-443. https://doi.org/10.1007/s10040-005-0437-6. DOI: https://doi.org/10.1007/s10040-005-0437-6
Urban S. (2011). Cartographie de la perméabilité des formations superficielles du territoire de la Communauté Urbaine de Strasbourg. Final Report BRGM/RP-60275-FR, 77 p. without annexes, 43 ill.
Vallin V., Dumont E., Pétillon G., Gerolin A., Degrave M., et al. (2016). Cartographier l’aptitude des sols à l’infiltration des eaux pluviales : l’expérience de 6 collectivités en France. Novatech 2016 - 9ème Conférence internationale sur les techniques et stratégies pour la gestion durable de l‘Eau dans la Ville, Juin 2016, Lyon, France. hal-03322091.
Wang Y., Jiang Z. and Zhang L. (2022). Sponge City Policy and Sustainable City Development: The Case of Shenzhen. Front. Environ. Sci. 9:772490. doi: 10.3389/fenvs.2021.772490. DOI: https://doi.org/10.3389/fenvs.2021.772490
Warwick F., Charlesworth S., Blackett M. (2013). Geographical information as a decision support tool for sustainable drainage at the city scale. Novatech 2013 - 8ème Conférence internationale sur les techniques et stratégies durables pour la gestion des eaux urbaines par temps de pluie / 8th International. Conference on planning and technologies for sustainable management of Water in the City, Jun 2013, Lyon, France. ffhal-0330340.

Supporting Agencies

ADEME (French Environmental Agency), Rennes Metropolis, SABOM

How to Cite

Lucassou, F., Chrétien, P., Pinson, S., Barrière, J., & Le Guern, C. (2024). Mapping the intrinsic potential of water infiltration in urban subsurface: feedback from France. Acque Sotterranee - Italian Journal of Groundwater, 13(3). https://doi.org/10.7343/as-2024-776

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.