Methodology for the assessment of groundwater resources sustainability: the case of the Lepini mountains aquifer basin, Italy

Submitted: 16 May 2024
Accepted: 12 February 2025
Published: 31 March 2025
Abstract Views: 110
PDF: 42
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

The effect of climate change on groundwater recharge is becoming increasingly important and requires a resilient management model for a safe water supply. A larger view of the system must be adopted, and humans must become only a part of the whole. This work presents a methodology to evaluate the sustainability of water resources in a watershed using a simplified water balance method. The methodology uses available data from weather stations and the historical analysis of temperatures and precipitations over 95 years. The results obtained in a previous project were considered to extend the plain weather station data over the entire watershed. Results present a good agreement and allow us to conduct a preliminary analysis of the water system’s reliability. The Mt. Lepini aquifer appears in a critical situation where the discharge is directly connected to the recharge with a failure rate of 83%, considering the average mean discharge of 427 Mm3/y. The management of this water system should be conducted considering all the ecosystem services, not only the water supply to human activities but also the existing water ecosystems present downstream to the spring systems.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

AA.VV. (2011) Progetto Monti Lepini. Studi idrogeologici per la tutela e la gestione della risorsa idrica. In Gangemi Editore, Roma, Italy. ISBN 978-88-492-2178-7.
Al Atawneh, D., Cartwright, N., Bertone, E. (2021). Climate change and its impact on the projected values of groundwater recharge: A review. Journal of Hydrology 601(5):126602. doi:10.1016/j.jhydrol.2021.126602 DOI: https://doi.org/10.1016/j.jhydrol.2021.126602
Alimonti, C., Federici, E., Gazzetti, C. (2011). Bilancio idrico distribuito e usi antropici della risorsa idrica lepina “Distributed water balance and anthropogenic uses of the Lepin water resource” (ed.) Progetto Monti Lepini. Studi idrogeologici per la tutela e la gestione della risorsa idrica, Gangemi Editore, Roma, Italy, pp. 68-81.
ARPA Lazio, Ambiente Lazio 2021 (2021). I dati dell’ARPA “ARPA’s data”, ARPA Lazio, Roma. Available from https://www.arpalazio.it/documents/20124/88ace5e4-f8ca-145d-9b1a-8fcfdaf6790a- last accessed 07/10/2024
Blak, D., Hartnady, C. J. H., Hay, E. R., Hugman, R. T. (2023). Geoethical issues around water security for the City of Cape Town (South Africa) and groundwater resilience in uncertain circumstances: development of the Atlantis, Cape Flats and Table Mountain Group Aquifers. Sustainable Water Resources Management. doi:10.1007/s40899-023-00928-w DOI: https://doi.org/10.1007/s40899-023-00928-w
Boni, C., Bono, P., Capelli, G. (1986). Schema idrogeologico dell’Italia centrale “Hydrogeological map of central Italy”. Memorie della Società Geologica Italiana 35:991-1012.
Brugioni, M., Consumi, F., Mazzanti, B., Menduni, G., Montini, G. (2008). Determinazione dell'infiltrazione efficace alla scala di bacino finalizzata alla individuazione delle aree a diversa disponibilità di risorse idriche sotterranee “Determination of effective infiltration to the basin scale for the identification of areas with different availability of groundwater resources”, From the conference: Stato del territorio e delle risorse naturali in Toscana, settembre 2008, Ordine dei Geologi della Toscana, Firenze, Italy.
Capelli, G., Del Monaco, F., Mazza, R., Tallini, M., Teoli, P. (2011). Assetto geologico e idrogeologico dell’area di studio “Geological and hydrogeological arrangement of the study area”. (ed.) Progetto Monti Lepini. Studi idrogeologici per la tutela e la gestione della risorsa idrica. Gangemi Editore, Roma, Italy 14-30.
Celico, P. (1983). Idrogeologia dei massicci carbonatici, delle piane quaternarie e delle aree vulcaniche dell’Italia centro-meridionale “Hydrogeology of the carbonate massifs, quaternary plains and volcanic areas of central-southern Italy”, Cassa del Mezzogiorno, Roma, Italy. Available from: https://aset.acs.beniculturali.it/dm_0/00/high/biblio/pdf/Quaderno-4_2.pdf- last accessed: 07/10/2024
Celico, P. (1988). Prospezioni Idrogeologiche “Hydrogeological Prospecting”. Vol. I e II. Liguori Editore, Napoli, Italy.
Copernicus Climate Data Store. Available from: https://cds.climate.copernicus.eu/#!/home - last accessed 10-02-2024
CORINE Land Cover 2012 (raster 100 m) (2020) Europe, 6-yearly - version 2020_20u1, May 2020.
Cosentino, D., Cipollari, P., Marsili, P., Scrocca, D. (2009). Geology of the central Apennines: a regional review. Journal of the Virtual Explorer 36(11). doi:10.3809/jvirtex.2010.00223 DOI: https://doi.org/10.3809/jvirtex.2010.00223
D’Agostino, D. R., Scardigno, A., Lamaddalena, N., et al. (2014). Sensitivity Analysis of Coupled Hydro-Economic Models: Quantifying Climate Change Uncertainty for Decision-Making. Water Resources Manage 28, 4303–4318. doi: 10.1007/s11269-014-0748-2 DOI: https://doi.org/10.1007/s11269-014-0748-2
Goma, K., Dinesh, P. (2021). Groundwater potential as an indicator of water poverty index in drought-prone mid-hill region of Nepal Himalaya. Groundwater for Sustainable Development 100502. doi: 10.1016/j.gsd.2020.100502 DOI: https://doi.org/10.1016/j.gsd.2020.100502
Hamed, Y., Hadji, R., Redhaounia, B., et al. (2018). Climate impact on surface and groundwater in North Africa: a global synthesis of findings and recommendations. Euro-Mediterranean J Environ Integr 3, 25. doi: 10.1007/s41207-018-0067-8 DOI: https://doi.org/10.1007/s41207-018-0067-8
Hashimoto, T., Stedinger, J. R., and Loucks, D. P. (1982). Reliability, resiliency and vulnerability criteria for water resource system performance evaluation. Water Resour. Res., 18(1), 14–20. doi.org/10.1029/WR018i001p00014 DOI: https://doi.org/10.1029/WR018i001p00014
Healy, R. W., Winter, T.C., LaBaugh, J. W., Franke, O. L. (2007). Water Budgets: Foundations for Effective Water-Resources and Environmental Management. U.S. Geological Survey Circular 1308, 90 p. IPCC WGI interactive Atlas. Available from: https://interactive-atlas.ipcc.ch – last accessed 10/02/2024 DOI: https://doi.org/10.3133/cir1308
Kherbache, N., Molle, F. (2023). Causes and consequences of the Macta basin closure. International Journal of Water Resources Development, 39:3, 382-403. doi: 10.1080/07900627.2022.2089100 DOI: https://doi.org/10.1080/07900627.2022.2089100
Khouri, J. (2003). Sustainable development and management of water resources in the Arab region. Developments in Water Science, 50: 199-220. doi: 10.1016/S0167-5648(03)80018-7 DOI: https://doi.org/10.1016/S0167-5648(03)80018-7
Konikow, L. F. (2011). Contribution of global groundwater depletion since 1900 to sea-level rise. Geophysical Research Letters 38:1-5. doi: 10.1029/2011GL048604 DOI: https://doi.org/10.1029/2011GL048604
Labbe, J., Celle, H., Devidal, J. L., Albaric, J., Mailhot, G. (2023). Combined Impacts of Climate Change and Water Withdrawals on the Water Balance at the Watershed Scale-The Case of the Allier Alluvial Hydrosystem (France). Sustainability. doi: 10.3390/su15043275 DOI: https://doi.org/10.3390/su15043275
(2021) Programma FESR Lazio 2021-2027 - Rapporto Ambientale “FESR Lazio 2021-2027 programme - Environmental report”. Lazio Innova, Roma. Available from: https://www.lazioeuropa.it/archivio1420/app/uploads/2022/02/rapporto_ambientale_vas_programma_fesr_lazio.pdf – last accessed 07-10-2024
Magana, V., Herrera, E., Abrego-Gongora, C. J., Avalos, J. A. (2021). Socio-economic Drought in a Mexican Semi-arid City: Monterrey Metropolitan Area, a Case Study, Frontiers in Water 3. doi: 10.3389/frwa.2021.579564 DOI: https://doi.org/10.3389/frwa.2021.579564
Mapani, B. S., Shikangalah, R.N., Mwetulundila, A. L. (2023). A review on water security and management under climate change conditions, Windhoek, Namibia. Journal of African Earth Sciences, Volume 197, 104749. DOI: https://doi.org/10.1016/j.jafrearsci.2022.104749
Mays, L.W. (2013). Groundwater Resources Sustainability: Past, Present, and Future. Water Resources Management 27:4409–4424. doi: 10.1007/s11269-013-0436-7 DOI: https://doi.org/10.1007/s11269-013-0436-7
Mazza, R., La Vigna, F., Alimonti, C. (2014). Evaluating the Available Regional Groundwater Resources Using the Distributed Hydrogeological Budget. Water Resources Management 28, 749–765. doi: 10.1007/s11269-014-0513-6 DOI: https://doi.org/10.1007/s11269-014-0513-6
Mianabadi, A., Pourreza-Bilondi, M. (2023). Toward an analysis of water resources components through the Budyko approach in a large-scale framework, Iran. Appl Water Sci 13, 132. doi:10.1007/s13201-023-01934-1 DOI: https://doi.org/10.1007/s13201-023-01934-1
Mouton, J. (1977). Contributo allo studio delle acque sotterranee dell'Agro Romano e Pontino “Contribution to the study of groundwater of the Agro Romano and Pontino”. Acts: “L’acqua per la Pianura Pontina: situazione e prospettive”. Consorzio Bonifica Latina
Parotto, M., Tallini, M. (2013). Geometry and kinematics of the Montelanico-Carpineto Backthrust (Lepini Mts., Latium) in the hangingwall of the early Messinian thrust front of the central Apennines: implications for the Apennine chain building. Italian Journal of Geosciences. 132,2: 274-289. doi: 10.3301/IJG.2012.34 DOI: https://doi.org/10.3301/IJG.2012.34
Rizzoli, A. (2024). Sustainability of water resources for ecosystems through predictive models and monitoring systems: case study of Monumento Naturale Giardino di Ninfa, Master thesis, Sapienza Università di Roma, Rome, Italy, 23 January 2024.
Sandoval-Solis, S., McKinney, D. C., Loucks, D. P. (2011). Sustainability Index for Water Resources Planning and Management, Journal of Water Resources Planning and Management, Vol. 137, No. 5, September 1. DOI: 10.1061/(ASCE)WR.1943-5452.0000134 DOI: https://doi.org/10.1061/(ASCE)WR.1943-5452.0000134
Shah, T. (2014). Groundwater governance and irrigated agriculture. The Background Papers No.19. Global Water Partnership, Stockholm. ISBN: 978-91-87823-06-0.
Turc, L. (1955). Le bilan d’eau des sols: relation entre les précipitations, l’évaporation et l’écoulement “Soil water balance: relationship between precipitation, evaporation and runoff”. Journées de l’Hydraulique. 3-1: 36-43, Alger.
UN (2022). Concept Note on the Water Action Agenda, Version 1 November 2022. Available from https://sdgs.un.org/conferences/water2023/action-agenda, - last access 15-12-2024.

How to Cite

Alimonti, C., Amodio, M., & Rizzoli, A. (2025). Methodology for the assessment of groundwater resources sustainability: the case of the Lepini mountains aquifer basin, Italy. Acque Sotterranee - Italian Journal of Groundwater, 14(1). https://doi.org/10.7343/as-2025-784

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.