Groundwater resilience, security, and safety in the four largest cities in Denmark
Accepted: 8 September 2024
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Denmark's complete reliance on groundwater for water supply presents a unique case study in management of natural resources, urban planning, and water resilience in the face of climate change. This paper examines the groundwater management strategies in Denmark in general, focusing on Denmark's four largest cities—Copenhagen, Aarhus, Odense, and Aalborg— each facing distinct challenges due to their demographic, geographical, hydrogeological, and economic characteristics. Through analysis of these cities' approaches to groundwater management, this research contributes to the global discourse on sustainable urban water supply systems. As coastal groundwater cities (CGC), these urban areas must navigate the complexities of sustaining growing populations, mitigating climate change impacts, and coastal processes while ensuring the long-term viability of their groundwater resources. Copenhagen and Aalborg, built atop semi-confined fractured and locally karstic carbonate rocks, highlights the specific challenges associated with karstic groundwater systems, while, Aarhus, and Odense built on glaciofluvial aquifers faces different issues. The different groundwater challenges in these cities underscores the importance of integrating urban development with water resource management and environmental sustainability, offering valuable insights and lessons learned for other regions facing similar challenges. This study, thus not only sheds light on Denmark's groundwater management practices, but also emphasizes the need for innovative solutions to ensure the resilience of urban water supply systems in a changing climate and increasing pressures of emerging organic contaminants and elevated concentrations of geogenic elements induced by water abstraction and fluctuating water tables. Advanced Danish monitoring and modelling tools applied to support decision-making and innovation within the water sector are continuously developed and improved to support resilient and sustainable management of the available water resources.
Aalborg Municipality (2024) The politicians must act now to save
the drinking water. Press release 2 April 2024. In Danish only.
https://www.aalborgforsyning.dk/privat/nyheder-og-presse/senestenyheder/
-april-2024-politikerne-skal-handle-nu-for-at-reddedrikkevandet/
Accessed 01-07-2024.
Aalborg Municipality (2021) Water Supply Plan 2021-2032. In Danish
only. https://aalborgkommune.viewer.dkplan.niras.dk/plan/17#/
Accessed 01-07-2024.
Aalborg Municipality (2020) Environmental evaluation of draft
Water Supply Plan 2021-2032. 44 p. In Danish only. https://
aalborgkommune.viewer.dkplan.niras.dk/plan/17#/80065 Accessed
-07-2024.
Aarhus Municipality (2015) Water Supply Planning 2016-2023. 112 p.
In Danish only. https://aarhus.dk/demokrati/planer-og-politikker/
natur-og-miljoe/vandforsyningsplan Accessed 01-07-2024.
Aarhus Vand (2024). Groundwater parks – lasting protection of our
drinking water. In Danish only. https://www.aarhusvand.dk/cases/
drikkevand/grundvandsparker/. Accessed 01-07-2024.
Ahmad, A., van der Wens, P., Baken, K., de Waal, L., Bhattacharya,
P., & Stuyfzand, P. (2020) Arsenic reduction to <1 μg/L in Dutch
drinking water. Environment International, V 134, 105253. https://
doi.org/10.1016/j.envint.2019.105253
Albers, C.N., Johnsen, A.R & Bollmann, U.E. (2023) Urban areas as
sources of the groundwater contaminants N,N-dimethylsulfamide
(N,N-DMS) and 1,2,4-triazole. Science of The Total Environment
, 163377. https://doi.org/10.1016/j.scitotenv.2023.163377 DOI: https://doi.org/10.1016/j.scitotenv.2023.163377
Allen, A. & Chapman, D. (2001) Impacts of afforestation on
groundwater resources and quality. Hydrogeology Journal 9, 390–
https://doi.org/10.1007/s100400100148 DOI: https://doi.org/10.1007/s100400100148
Aller, L.T., T. Bennett, J.H. Lehr, R.J. Petty, & Hackett, G. (1987)
DRASTIC. A Standardized System for Evaluating Ground
Water Pollution Potential Using Hydrogeologic Settings. U.S.
Environmental Protection Agency/600/287/035. Washington, DC.
pp.
Andersen, S. & Sjørring, S. (1992) Geologically Speaking - Northern
Jutland. Geografforlaget, Ministry of the Environment, Agency for
Forests and Nature 1992. 209 p. ISBN: 87-7702-055-3. In Danish
with English Summary & Deutsche Zusammenfassung.
Alvarado, J.A.C., Purtschert, R., Hinsby, K., Troldborg, L., Hofer, M.,
Kipfer, R., Aeschbach-Hertig, W., & Arno-Synal, H. (2005) 36Cl
in modern groundwater dated by a multi-tracer approach (3H/3He,
SF6, CFC-12 and 85Kr): A case study in quaternary sand aquifers
in the Odense Pilot River Basin, Denmark. Applied Geochemistry,
(3), 599–609. https://doi.org/10.1016/j.apgeochem.2004.09.018 DOI: https://doi.org/10.1016/j.apgeochem.2004.09.018
Badawi, N., Karan, S., Haarder, E. B., Gudmundsson, L., Hansen,
C. H., Olsen, L. A., Nielsen, C. B., Plauborg, F., & Kørup, K.
(2024). The Danish Pesticide Leaching Assessment Programmeme.
Monitoring results May 1999 - June 2023. GEUS. The Danish
Pesticide Leaching Assessment Programmeme. Monitoring results
Vol. 2023. https://doi.org/10.22008/gpub/38797
Barfod, J. (1977) Water. In: von Eyben, W.E. (ed.): Danish
Environmental Law, Vol III: Environmental protection. Akademisk
Forlag, Universitetsforlaget, 257-274. ISBN: 87-500-1757-8. In
Danish only.
Benz, S. A., Irvine, D. J., Rau, G. C., Bayer, P., Menberg, K., Blum,
P., Jamieson, R. C., Griebler, C& Kurylyk, B. L. (2024) Global
groundwater warming due to climate change. Nature Geoscience.
https://doi.org/10.1038/s41561-024-01453-x DOI: https://doi.org/10.1038/s41561-024-01453-x
Bjerre, T.K., Seslef, J. & Bechsgaard, A. (2023) Nature project
Holmehave: A large nature project where space is limited. Teknik
og Miljø, 1, 18-23, In Danish only.
Broers, H.P., Hinsby, K., Kivits, T. & Jurgens, B. (2021) Investigation
of age distributions in water supply wells and recommendations
for application of tracers and models mainly for estimating
groundwater ages between 100 and 1000 years. Deliverable 6.4,
report of the GeoERA HOVER project. https://repository.europegeology.
eu/egdidocs/hover/hover_d64%2Bage%2Bdistributions%2
Bfinal.pdf
Colgan, W., Henriksen, H. J., Bennike, O., et al. (2022) Sea-level rise in
Denmark: paleo context, recent projections and policy implications.
GEUS Bulletin, 49, 8315. https://doi.org/10.34194/geusb.v49.8315 DOI: https://doi.org/10.34194/geusb.v49.8315
Copenhagen Municipal Council (1959) The history of Copenhagen
Water Supply Company. J. Jørgensen & CO Bogtrykkeri A/S, 263
p. In Danish only.
Copenhagen Municipality (2021) Note to the city council on how the
Municipality works with raising groundwater tabl). 3 p. In Danish
only. https://www.kk.dk/sites/default/files/agenda/b859aaae-
-44dd-8211-014a1ccc9ffd/ba394209-bc09-4bd4-a026-
f5b7646-bilag-2.pdf Accessed 01-07-2024.
Copenhagen Municipality (2012) Water Supply Plan 2012, Copenhagen
Municipality. Teknik- og Miljøforvaltningen, Center for Miljø. 71
p. In Danish only. https://www.kk.dk/sites/default/files/agenda/
b1bfe2c0-c7db-461f-96d0-2d51c1adf3c4/1bba5fe7-1d0a-4e53-
d1-a3925516c751-bilag-1.pdf Accessed 01-07-2024.
Cousins, I. T., Johansson, J. H., Salter, M. E., Sha, B., & Scheringer,
M. (2022) Outside the Safe Operating Space of a New Planetary
Boundary for Per- and Polyfluoroalkyl Substances (PFAS).
Environmental Science & Technology. https://doi.org/10.1021/acs.
est.2c02765
Danish Ministry of the Environment (2021) Reporting from a fasttrack
project on shallow groundwater in urban areas. 27 p. In
Danish only. https://www.klimatilpasning.dk/media/1840098/
afrapportering-af-arbejdsgruppe-om-hoejtstaaende-grundvandjuni-
pdf Accessed 01-07-2024.
DANVA (2024) The Danish Association of Water Utilities (DANVA)
proposes a new national authority for climate change adaptation
and water resources management. In Danish only. https://www.
danva.dk/nyheder/2024/danva-foreslaar-staten-skal-have-ansvarfor-
forvaltning-af-klimatilpasning-og-vandressourcer/
EEA (2024) The WISE Freshwater Information System for Europe.
https://water.europa.eu/freshwater/europe-freshwater/waterframework-
directive 03-072024.
EESC (2023) Declaration for a European Blue Deal - #EUBlueDeal.
European Economic and Social Committee, Brussel, Belgium.
https://www.eesc.europa.eu/sites/default/files/files/declaration_for_
an_eu_blue_deal_en.pdf Accessed 01-07-2024.
EGDI (2024a) Hydraulic conductivity as indicator of aquifer
vulnerability according to the Drastic Index. https://data.geus.dk/
egdi/?mapname=egdi_new_structure#baslay=baseMapGEUS&ex
tent=3639276.8761321185,3100437.9442067104,4349026.962019
,3399309.269435748&layers=gewp7_peu7_c. Accessed 01-07-
EGDI (2024b) Map of the estimated Drastic Index for Denmark.https://
data.geus.dk/egdi/?mapname=egdi_new_structure#baslay=baseM
apGEUS&extent=3639276.8761321185,3081077.52308346,434902
962019256,3418669.6905589984&layers=gewp7_peu0_drastic.
Accessed 01-07-2024.
EGDI (2024c) Groundwater age distributions in European aquifers
https://data.geus.dk/egdi/?mapname=egdi_new_tructure#baslay=b
aseMapGEUS&extent=3578613.2236028383,3082367.711332184,4
255571296,3424489.974012652&layers=tracerdata_III
EGDI (2024d) Potential groundwater recharge in Denmark 1981 –
https://data.geus.dk/i/#baslay=baseESRItopo&extent=36605
746303725,3063588.371454712,4323863.239972577,3432191.9
&layers=potentialgroundwaterrecharge. Accessed 01-07-
EGDI (2024e) Hourly measurements of near real-time variations
in nitrate concentrations in a small creek fed by a karst spring
(Store Blåkilde). https://data.geus.dk/sensornet/egditimeseries/
index.html?country=denmark&chart=nitrate&locale=en-GB&idlist=
StoreBl%E5kilde_1. Accessed 01-07-2024.
EGS (2023) Directors’ decision (October 2023) on establishment of a
Task Force “to explore the case for, and develop a position paper on,
the need for a Subsurface Spatial Planning Directive” by Q4 2024.
EuroGeoSurveys, Brussels.
European Commission (2020) Directive (EU) 2020/2184 of the
European Parliament and of the Council of 16 December 2020 on
the quality of water intended for human consumption (EU Drinking
Water Directive). http://data.europa.eu/eli/dir/2020/2184/oj
European Commission (2019) Voluntary Groundwater Watch List:
Concept and Methodology. CIS Working Group Groundwater,
DG Environment, https://circabc.europa.eu/ui/group/9ab5926dbed4-
-9aa7-9964bbe8312d/library/b503a6ee-2745-4f33-aa9e-
db5bdf4c4b1/details.
European Commission (2015) Ecological flows in the implementation
of the Water Framework Directive. CIS Guidance Document
No. 31, Technical Report – 2015-086. https://circabc.europa.
eu/ui /group/9ab5926d-bed4-4322-9aa7-9964bbe8312d/
library/0c814b98-ee99-4376-9313-9655d522ef9c/details
European Commission (2009) Guidance on Groundwater status and
trend assessment. CIS Guidance Document No. 18, Technical
Report –2009 – 026. https://circabc.europa.eu/ui/group/9ab5926dbed4-
-9aa7-9964bbe8312d/library/7a95729a-44e9-4996-
b993-7a95a58fc75a/details
European Commission (2006) Directive (EU) 2006/118 EC of the
European Parliament and of the Council of 12 December 2006 on
the protection of groundwater against pollution and deterioration.
(EU Groundwater Directive). https://eur-lex.europa.eu/eli/
dir/2006/118/oj
European Commission (2000) Directive (EU) 2000/60 EC of the
European Parliament and of the Council of 23 October 2000
establishing a framework for Community action in the field of
water policy. (EU Water Framework Directive). https://eur-lex.
europa.eu/eli/dir/2000/60/oj
European Commission (1991) Directive (EU) 91/676 EEC of the
European Parliament and of the Council of 12 December 1991
concerning the protection of waters against pollution caused by
nitrates from agricultural sources. (EU Nitrate Directive). https://
eur-lex.europa.eu/eli/dir/1991/676/2008-12-11
Foster, S. (2022) The key role for groundwater in urban water-supply
security. Journal of Water and Climate Change, 13(10), 3566–3577.
https://doi.org/10.2166/wcc.2022.174 DOI: https://doi.org/10.2166/wcc.2022.174
Foster, S., & Bjerre, T. K. (2023) Diffuse agricultural pollution
of groundwater: addressing impacts in Denmark and Eastern
England. Water Quality Research Journal, 58(1), 14–21. https://
doi.org/10.2166/wqrj.2022.022
Gejl, R.N., Bjerg, P.L., Henriksen, H.J., Bitsch, K., Troldborg, L.,
Schullehner, J., Rasmussen, J., & Rygaard, M. (2020) Relating
wellfield drawdown and water quality to aquifer sustainability
– A method for assessing safe groundwater abstraction.
Ecological Indicators, 110, 105782. https://doi.org/10.1016/j.
ecolind.2019.105782
Giménez-Forcada, E., Luque-Espinar, J. A., López-Bahut, M. T., et al
(2022) Analysis of the geological control on the spatial distribution
of potentially toxic concentrations of As and F- in groundwater on a
Pan-European scale. Ecotoxicology and Environmental Safety, 247,
https://doi.org/10.1016/j.ecoenv.2022.114161 DOI: https://doi.org/10.1016/j.ecoenv.2022.114161
Gravesen, P., Binderup, M., Houmark-Nielsen, M. & Krüger, J. (2017)
Geologically speaking – Zealand and Islands. GO Forlag and
Geocenter Danmark 2017. 333 p. In Danish with English summary.
ISBN: 978-87-7702-615-7.
Grunfeld, D.A., Gilbert, D., Hou, J., Jones, A. M., Lee, M. J., Kibbey,
T. C.G., & O’Carroll, D.M. (2024) Underestimated burden of
per- and polyfluoroalkyl substances in global surface waters and
groundwaters. Nature Geoscience, 17(4), 340–346. https://doi.
org/10.1038/s41561-024-01402-8
Gustard, A. & Wesselink, A.J. (1993) Impact of land-use change on
water resources: Balquhidder catchments. Journal of Hydrology,
(3-4), 389-401. https://doi.org/10.1016/0022-1694(93)90065-H DOI: https://doi.org/10.1016/0022-1694(93)90065-H
Henriksen, H. J., Schneider, R., Koch, J., Ondracek, M., Troldborg,
L., Seidenfaden, I. K., Kragh, S. J., Bøgh, E. & Stisen, S. (2023a)
A New Digital Twin for Climate Change Adaptation, Water
Management, and Disaster Risk Reduction (HIP Digital Twin).
Water (Switzerland), 15, 25. https://doi.org/10.3390/w15010025 DOI: https://doi.org/10.3390/w15010025
Henriksen, H.J., Ondracek, M., & Troldborg, L. (2023b) Assessment
of water resources – data report. GEUS report 2023/8, 133 p.
Geological Survey of Denmark and Greenland. In Danish only.
https://doi.org/10.22008/gpub/3467
Henriksen, H.J., Schneider, R.J.M. & Nilsson, B. (2022) Analysis of
drought indicators based on a national coupled hydrological model.
Identification of drought events, propagation of drought indices,
aggregation level and illustration of how data from HIP real-time
model can support vulnerability assessment for damages to houses.
GEUS Report 25/2022, 41 p. Geological Survey of Denmark and
Greenland. https://doi.org/10.22008/gpub/34660
Henriksen, H. J., Jakobsen, A., Pasten-Zapata, E., Troldborg, L.
& Sonnenborg, T. O. (2021a) Assessing the impacts of climate
change on hydrological regimes and fish EQR in two Danish
catchments. Journal of Hydrology: Regional Studies, 34. https://
doi.org/10.1016/j.ejrh.2021.100798
Henriksen, H.J., Kragh, S.J., Gotfredsen, J., Ondracek, M., van Til, M.,
Jakobsen, A., Schneider, R.J.M., Koch, J., Troldborg, L., Rasmussen,
P., Pasten-Zapata, E. & Stisen, S. (2021b) Development of crosscountry
model estimations of surface-near hydrological conditions
in 100-meter grid cells using the DK-model. Documentation
report, Geological Survey of Denmark and Greenland, 132 p. In
Danish only. https://doi.org/10.22008/gpub/38113.
Henriksen, H.J., Troldborg, L., Nyegaard, P., Sonnenborg, T.O.,
Refsgaard, J.C. & Madsen, B. (2003) Methodology for construction,
calibration and validation of a national hydrological model for
Denmark. Journal of Hydrology 280, 52–71. https://doi.org/10.1016/
S0022-1694(03)00186-0
Hinsby, K., Négrel, P., de Oliveira, D., Barros, R., Venvik, G.,
Ladenberger, A., Griffioen, J., Piessens, K., Calcagno, P., Götzl,
G., Broers, H.P., Gourcy, L., van Heteren, S., Hollis, J., Poyiadji,
E., Capova, D. & Tulstrup, J. (2024) Mapping and understanding
Earth: Open access to digital geoscience data and knowledge
supports societal needs and UN Sustainable Development
Goals. International Journal of Applied Earth Observation and
Geoinformation, Volume 130,103835. https://doi.org/10.1016/j.
jag.2024.103835.
Hinsby, K., Condesso de Melo, M.T., & Dahl, M. (2008) European
case studies supporting the derivation of natural background levels
and groundwater threshold values for the protection of dependent
ecosystems and human health. Science of the Total Environment,
(1–3), 1–20.
Hinsby, K., Troldborg, L., Purtschert, R. & Alvarado, J.A.C. (2006)
Integrated dynamic modelling of tracer transport and long-term
groundwater/surface water interaction using four 30 year 3H time
series and multiple tracers for groundwater dating. In: Isotopic
Assessment of Long Term Groundwater Exploitation, Proceedings
of a final research coordination meeting held in Vienna, 12-16
May, 2003, IAEA-TECDOC-CD-1507. https://www-pub.iaea.org/
MTCD/publications/PDF/te_1507_web/PDF/TE_1507.pdf, p. 73-
Accessed 01-07-2024.
Hinsby, K., Purtschert, R., & Edmunds, W. (2007) Groundwater Age
and Quality. In: Quevauviller, P. (Ed.): Groundwater Science and
Policy: An International Overview. RSC Publishing, 217–239.
Hinsby, K., Edmunds, W. M., Loosli, H. H., Manzano, M., de
Melo Condesso, M. T., & Barbecot, F. (2001) The modern water
interface: Recognition, protection and development - Advance of
modern waters in European aquifer systems. In Edmunds, W. M.
& Milne, C.J. (Eds.): Palaeowaters in Coastal Europe: Evolution of
Groundwater since the Late PleistoceneGeological Society Special
Publication, 189. https://doi.org/10.1144/GSL.SP.2001.189.01.16 DOI: https://doi.org/10.1144/GSL.SP.2001.189.01.16
Højberg, A.L., Thodsen, H., Børgesen, C.D., Tornbjerg, H., Nordstrøm,
B.O., Troldborg, L., Hoffmann, C.C., Kjeldgaard, A., Holm, H. M.,
Audet, J., Ellermann, T., Christensen, J.H., Bach, E.O., & Pedersen,
B.F. (2021) National nitrogen model – version 2020. Method
report, Geological Survey of Denmark and Greenland. In Danish
only. https://doi.org/10.22008/gpub/38119.
Højberg, A.L., Troldborg, L., Stisen, S., Christensen, B.B.S. &
Henriksen, H.J. (2013) Stakeholder driven update and improvement
of a national water resources model. Environmental Modelling &
Software 40, 202–213. https://doi.org/10.1016/j.envsoft.2012.09.010 DOI: https://doi.org/10.1016/j.envsoft.2012.09.010
Ingemarsson, M.L., Weinberg, J., Rudebeck, T. &Erlandsson, L.W.
(2022). The Essential Drop to Reach Net-Zero: Unpacking
Freshwater’s Role in Climate Change Mitigation. Stockholm
International Water Institute, Stockholm, Sweden. https://siwi.org/
publications/essential-drop-to-net-zero/. Accessed 01-07-2024.
Jensen J. (2013). The Prehistory of Denmark. From the Stone Age to
the Vikings. 1240 p. Gyldendal, ISBN: 9788702044263
Johnsen A.R., Thorling, L. & Albers C.N. (2023). PFAS-substances and
pesticides in groundwater. GEUS report 2023/42, 29 p. Geological
Survey of Denmark and Greenland. In Danish only. https://doi.
org/10.22008/gpub/34709
Jørgensen, L.F., Villholth, K.G & Refsgaard, J.C. (2016). Groundwater
management and protection in Denmark: a review of preconditions,
advances and challenges. International Journal of Water
Resources Development 33(6), 868–889. https://doi.org/10.1080/07 DOI: https://doi.org/10.1080/07
2016.1225569
Koch, J., Gotfredsen, J., Schneider, R., Troldborg, L., Stisen, S. &
Henriksen, H.J. (2021). High Resolution Water Table Modeling
of the Shallow Groundwater Using a Knowledge-Guided Gradient
Boosting Decision Tree Model. Frontiers in Water 3, 701726.
https://doi.org/10.3389/frwa.2021.701726 DOI: https://doi.org/10.3389/frwa.2021.701726
La Vigna, F. (2022). Review: Urban groundwater issues and resource
management, and their roles in the resilience of cities. Hydrogeology
Journal. https://doi.org/10.1007/s10040-022-02517-1 DOI: https://doi.org/10.1007/s10040-022-02517-1
La Bianca, A., Koch, J., Jensen, K. H., Sonnenborg, T. O., & Kidmose, J.
(2024). Machine learning for predicting shallow groundwater levels
in urban areas. Journal of Hydrology, 632. https://doi.org/10.1016/j.
jhydrol.2024.130902
La Bianca, A., Mortensen, M. H., Sandersen, P., Sonnenborg, T. O.,
Jensen, K. H., & Kidmose, J. (2023). Impact of urban geology on
model simulations of shallow groundwater levels and flow paths.
Hydrology and Earth System Sciences, 27(8), 1645–1666. https://
doi.org/10.5194/hess-27-1645-2023
Larsen, G. (2002). Geologically Speaking – Funen and Islands. Fyns
Amt, Geografforlaget, Ministry of the Environment, Agency for
Forests and Nature 2002, 144 p. In Danish only. ISBN: 978-87-
-340-8.
Larsen, G. & Kronborg, C. (1994). Geologically Speaking - Central
Jutland. Geografforlaget, Ministry of the Environment, Agency for
Forests and Nature 1994, 273 p. Danish only. ISBN: 87-7702-132-
In
Larsen, F. & Postma, D. (1997). Nickel mobilization in a groundwater
well field: Release by pyrite oxidation and desorption from
manganese oxides. Environmental Science & Technology, 31, 2589–
Laursen, G. & Linderberg, J. (2017). Odense – A City with Water Issues. DOI: https://doi.org/10.1016/j.proeng.2017.11.136
Procedia Engineering 209, 104-118. https://doi.org/10.1016/j.
proeng.2017.11.136 DOI: https://doi.org/10.2979/globalsouth.11.1.08
Martinsen, G., Bessiere, H., Caballero, Y., Koch, J., Collados-Lara, A.
J., Mansour, M., Sallasmaa, O., Pulido-Velazquez, D., Williams,
N. H., Zaadnoordijk, W. J., & Stisen, S. (2022). Developing a pan-
European high-resolution groundwater recharge map – Combining
satellite data and national survey data using machine learning.
Science of The Total Environment, 822, 153464. https://doi.
org/10.1016/j.scitotenv.2022.153464
Musy, S., Hinsby, K., Troldborg, L., Delottier, H., Guillon, S.,
Brunner, P., & Purtschert, R. (2023). Evaluating the impact of
muon-induced cosmogenic 39Ar and 37Ar underground production
on groundwater dating with field observations and numerical
modeling. Science of the Total Environment, 903. https://doi.
org/10.1016/j.scitotenv.2023.166588
Nilsson, B., Li, F., Chen, H., Sebok, E., & Henriksen, H. J. (2023).
Evidence of karstification in chalk and limestone aquifers connected
with stream systems and possible relation with the fish ecological
quality ratio in Denmark. Hydrogeology Journal, 31(1), 53–70.
https://doi.org/10.1007/s10040-022-02565-7 DOI: https://doi.org/10.1007/s10040-022-02565-7
Odense Municipality (2018). Water Supply Planning 2018-2030. 62
p. In Danish only. https://www.odense.dk/borger/miljoe-og-affald/
vand/vandforsynings-planlaegning Accessed 01-07-2024.
Pedersen, S. A. S., & Gravesen, P. (2011). Low- and intermediate
level radioactive waste from Risø, Denmark. Location studies
for potential disposal areas. Report no. 3. Geological setting
and tectonic framework in Denmark. GEUS report 2010/124,
p. Geological Survey of Denmark and Greenland. https://doi.
org/10.22008/gpub/28430
Persson, L., Carney Almroth, B. M., Collins, et al (2022). Outside the
Safe Operating Space of the Planetary Boundary for Novel Entities.
Environmental Science and Technology, 56(3), 1510–1521. https://
doi.org/10.1021/acs.est.1c04158
Postma, D., Larsen, F., Thai, N. T., Trang, P. T. K., Jakobsen, R.,
Nhan, P. Q., Long, T. V., Viet, P. H., & Murray, A. S. (2012).
Groundwater arsenic concentrations in Vietnam controlled by
sediment age. Nature Geoscience, 5(9), 656–661. https://doi.
org/10.1038/ngeo1540
Quevauviller, P.; Hinsby, K., Seidenfaden, I.K., Pulido-Velàzquez,
Sapiano, M., Coelho, R., Gattinesi, P., Hohenblum, P., Jirovsky, V.,
Marinheiro, F., Simas, L., Teixeira, R., Ugarelli, R., Cardarilli, M.,
ParaskeVopoulos, S., Vrachimis, S., Medema, G., Eliades, D. & La
Vigna, F.. (2024). The Urban Water Security and Safety Paradox.
This issue
Ramsay L., Petersen, M.M, Hansen, B., Schullehner, J., van der Wens,
P., Voutchkova, D., & Kristiansen, S.M. (2021). Drinking Water
Criteria for Arsenic in High-Income, Low-Dose Countries: The
Effect of Legislation on Public Health. Environmental Science
& Technology 55 (6), 3483-3493. https://doi.org/10.1021/acs.
est.0c03974
Rasmussen P, Kidmose J, Kallesøe A.J., Sandersen P.B.E., Schneider
R. & Sonnenborg T. O. (2023). Evaluation of adaptation measures
to counteract rising groundwater levels in urban areas in response
to climate change. Hydrogeology Journal 31, 35-52. https://doi.
org/10.1007/s10040-022-02573-7
Richardson, K., Steffen, W., Lucht, W., et al. (2023). Earth beyond six
of nine planetary boundaries. Science Advances 9(37), eadh2458.
https://doi.org/10.1126/sciadv.adh2458 DOI: https://doi.org/10.1126/sciadv.adh2458
Richter, F., Kloster, S., Wodschow, K., Hansen, B., Schullehner, J.,
Kristiansen, S. M., Petersen, M. M., Strandberg-Larsen, K., &
Ersbøll, A. K. (2022). Maternal exposure to arsenic in drinking DOI: https://doi.org/10.1289/isee.2022.P-0538
water and risk of congenital heart disease in the offspring.
Environment International, 160, 107051. https://doi.org/10.1016/j.
envint.2021.107051
Rodina, L. (2019). Defining “water resilience”: Debates, concepts,
approaches, and gaps. Wiley Interdisciplinary Reviews. Water,
(2), 1334. https://doi.org/10.1002/WAT2.1334 DOI: https://doi.org/10.1002/wat2.1334
Schneider, R., Koch, J., Troldborg, L., Henriksen, H. J., & Stisen, S.
(2022). Machine-learning-based downscaling of modelled climate
change impacts on groundwater table depth, Hydrology and Earth
System Sciences, 26, 5859–5877, https://doi.org/10.5194/hess-26-
-2022
Schullehner, J., Hansen, B., Thygesen, M., Pedersen, C. B., & Sigsgaard,
T. (2018). Nitrate in drinking water and colorectal cancer risk: A
nationwide population-based cohort study. International Journal of
Cancer, 143(1), 73–79. https://doi.org/10.1002/ijc.31306 DOI: https://doi.org/10.1002/ijc.31306
Sen, P., & Biswas, T. (2013). Arsenic: the largest mass poisoning of a DOI: https://doi.org/10.1136/bmj.f3625
population in history. BMJ (Clinical Research Ed.), 346. https://doi.
org/10.1136/BMJ.F3625
Seidenfaden, I.K., Sonnenborg, T.O., Stisen, S. & Kidmose, J. (2022).
Quantification of climate change sensitivity of shallow and deep
groundwater in Denmark. Journal of Hydrology: Regional Studies
, 101100. https://doi.org/10.1016/j.ejrh.2022.101100 DOI: https://doi.org/10.1016/j.ejrh.2022.101100
Skov- og Naturstyrelsen (1999). Copenhagen Water Supply Company,
buildings and facilities. Thematic overview 1999. Danish Ministry
of the Environment and Energi, 63 p. In Danish only. https://slks.
dk/fileadmin/user_upload/kulturarv/publikationer/emneopdelt/
bygninger/tema/vandforsyning/rapport.pdf
Smedley, P.L., & Kinniburgh, D.G. (2002) A review of the source,
behaviour and distribution of arsenic in natural waters. Applied
Geochemistry, 17(5), 517–568. https://doi.org/10.1016/S0883-
(02)00018-5
Sonne, C., Jenssen, B.M., Rinklebe, J., Lam, S.S., Hansen, M., Bossi,
R., Gustavson, K., & Dietz, R. (2023) EU need to protect its
environment from toxic per- and polyfluoroalkyl substances.
Science of the Total Environment, 876. https://doi.org/10.1016/j.
scitotenv.2023.162770
Sonnenborg, T.O., Christiansen, J.R., Pang, B., Bruge, A., Stisen,
S., & Gundersen, P. (2017) Analyzing the hydrological impact of
afforestation and tree species in two catchments with contrasting
soil properties using the spatially distributed model MIKE SHE
SWET. Agricultural and Forest Meteorology, 239, 118-133. https://
doi.org/10.1016/j.agrformet.2017.03.001
Stisen, S., Ondracek, M., Troldborg, L., Schneider, R.J.M. & Til,
M.J. van (2019) National water resource model, Model-setup and
calibration of the DK-model 2019. GEUS report 31/2019, 271 p.
Geological Survey of Denmark and Greenland. In Danish only.
https://doi.org/10.22008/gpub/32631
Stisen S., Højberg A.L., Troldborg L., Refsgaard J.C., Christensen
B.S.B., Olsen M. & Henriksen H.J. (2012) On the importance of
appropriate precipitation gauge catch correction for hydrological
modelling at mid to high latitudes. Hydrology and Earth System
Sciences 16: 4157-4176. https://doi.org/10.5194/hess-16-4157-2012 DOI: https://doi.org/10.5194/hess-16-4157-2012
Sunderland, E.M., Hu, X.C., Dassuncao, C., Tokranov, A.K., Wagner,
C.C., & Allen, J.G. (2019) A review of the pathways of human
exposure to poly- and perfluoroalkyl substances (PFASs) and present
understanding of health effects. In Journal of Exposure Science and
Environmental Epidemiology, 29(2), 131–147. Nature Publishing
Group. https://doi.org/10.1038/s41370-018-0094-1 DOI: https://doi.org/10.1038/s41370-018-0094-1
Thorling, L., Albers, C.N., Ditlefsen, D., Hansen, B., Johnsen,
A.R., Kazmierczak, J., Mortensen, M.H. & Troldborg, L.,
(2024) Groundwater Monitoring 1989-2022, Status and Trends.
Technical report, 148 p. Geological Survey of Denmark and
Greenland. In Danish only. https://www.geus.dk/vandressourcer/
overvaagningsprogrammemer/grundvandsovervaagning. Accessed
-07-2024.
Thorling, L., Albers, C.N., Hansen, B., Johnsen, A.R., Kazmierczak, J.,
Mortensen, M.H. & Troldborg, L. (2023) Groundwater Monitoring
-2021, Status and Trends. Technical report, 166 p. Geological
Survey of Denmark and Greenland. In Danish only. https://
www.geus.dk/vandressourcer/overvaagningsprogrammemer/
grundvandsovervaagning. Accessed 01-07-2024.
Troldborg, L. (2020) Danish groundwater bodies: New delineation
and characterisation as well as technical background for the
designation of drinking water occurrences. GEUS report 2020/1,
p. Geological Survey of Denmark and Greenland. In Danish
only. https://doi.org/10.22008/gpub/32641
Troldborg, L., Møller, I. B., & Sandersen, P. (2023) Revising Danish
groundwater bodies: Gathering experiences on qualitative status
assessments. GEUS report 2023/49, 49 p. Geological Survey of
Denmark and Greenland. In Danish only. https://doi.org/10.22008/
gpub/34716
Troldborg, L., Jensen, K.H., Engesgaard, P., Refsgaard, J.C., &
Hinsby, K. (2008) Using environmental tracers in modeling
flow in a complex shallow aquifer system. Journal of Hydrologic
Engineering, 13(11), 1037-1048. https://doi.org/10.1061/
(ASCE)1084-0699(2008)13:11(1037) DOI: https://doi.org/10.1061/(ASCE)1084-0699(2008)13:11(1037)
United Nations (2022) The United Nations World Water Development
Report 2022: Groundwater: Making the invisible visible. UNESCO,
Paris. https://unesdoc.unesco.org/ark:/48223/pf0000380721.
van der Keur, P. & Henriksen, H.J. (2022) Shallow Groundwater
in Cities. GEUS report 2022/23, 68 p. Geological Survey of
Denmark and Greenland. In Danish only. https://doi.org/10.22008/
gpub/34658 Accessed 01-07-2024.
VCS Denmark (2024a) Contaminated groundwater. In Danish only.
https://www.vandcenter.dk/vandkvalitet/pesticidfund Accessed 01-
-2024.
VCS Denmark (2024b) We plant forests. In Danish only. https://www.
vandcenter.dk/viden/grundvand/skovrejsning Accessed 01-07-2024.
Vangsgaard, C. (2023) The need for a new national water resources
planning strategy as seen by the Danish water utilities (DANVA).
Oral presentation at the annual Danish “Hydrology Day”, November
, 2023, Hotel HC Andersen, Odense, Denmark. In Danish
only. https://hydrologidag.dk/Media/638356521548704214/12_
Claus%20Vangsg%C3%A5rd_Vandplanl%C3%A6gning%20i%20
fremtiden%20-%20%C3%B8nsker%20fra%20forsyningerne.pdf
Accessed 01-07-2024.
Vangsgaard, C. & Hinsby, K. (2021) Implementation of the Water
Framework and Groundwater Directives in a European perspective
– introduction to activities of the European Commission’s
Working Group Groundwater (WGGW) within the Common
Implementation Strategy of the Water Framework Directive. Oral
presentation at the annual Danish “Hydrology Day”, October 26,
, Hotel HC Andersen, Odense, Denmark. In Danish only.
https://hydrologidag.dk/Media/637716983689913457/Claus_
Klaus_EurEau-EGS_EU-perspektiver.pdf Accessed 01-07-2024.
Voutchkova, D.D., Schullehner, J., Skaarup, C., Wodschow, K., Ersbøll,
A.K., & Hansen, B. (2021) Estimating pesticides in public drinking
water at the household level in Denmark. GEUS Bulletin, 47.
https://doi.org/10.34194/geusb.v47.6090 DOI: https://doi.org/10.34194/geusb.v47.6090
WHO (2022) Guidelines for drinking-water quality. Forth edition
incorporating the first and second addenda. World Health
Organisation, 583 p. ISBN 978-92-4-004506-4 (electronic
version). https://www.who.int/teams/environment-climate-changeand-
health/water-sanitation-and-health/water-safety-and-quality/
drinking-water-quality-guidelines Accessed 01-07-2024.
WSP, Smith, Teknologisk Institut & Lundgrens (2021) Shallow
groundwater in Danish cities. Compiled for and published by
Realdania, 47 p. In Danish only. https://www.klimatilpasning.
dk/media/1909341/terraennaert-grundvand-i-danske-byer.pdf
Accessed 01-07-2024.
Zhang, H. & Hiscock K.M. (2010) Modelling the impact of forest cover
on groundwater resources: A case study of the Sherwood Sandstone
aquifer in the East Midlands, UK. Journal of Hydrology, 392(3): p.
-149. https://doi.org/10.1016/j.jhydrol.2010.08.002 DOI: https://doi.org/10.1016/j.jhydrol.2010.08.002
Copyright (c) 2024 the Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
PAGEPress has chosen to apply the Creative Commons Attribution NonCommercial 4.0 International License (CC BY-NC 4.0) to all manuscripts to be published.