Reassessment of Plio-Quaternary aquifer mineralization (Sidi Mansour plain, Southern Tunisia): a machine learning approach

Submitted: 8 July 2024
Accepted: 6 February 2025
Published: 31 March 2025
Abstract Views: 196
PDF: 21
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Understanding aquifer mineralization is crucial for sustainable water resource management. Thus, the Plio-Quaternary aquifer of the Sidi Mansour plain was studied in detail for reassessment of its heterogeneous mineralization water. Geochemical analysis and stable (18O, 2H) and radiogenic isotope (3H, 14C) analyses have provided a better understanding of the hydrodynamics and mineralization processes underlying the chemical composition. An artificial neural network was used for an integrated groundwater assessment in the Sidi Mansour area via the prediction of total dissolved solids (TDS). To the west, the Plio-Quaternary aquifer has a Na-Ca-SO4 facies with high salinity because of mineral dissolution, mixing, and upward percolation of deeper waters through the Om Ali fault (contribution up to 96%). To the east, predominantly Ca-SO4 waters are less mineralized due to the infiltration of recent precipitation. Salinity prediction using machine learning indicated that the proposed model achieved high efficiency. The backpropagation neural network model results (10:4:1) indicated high accuracy of the trained algorithm, as confirmed by a cross-validation test (high accuracy [88.89%], specificity [100%], and R2 [0.9687]). This study highlights the importance of this model in predicting salinity for the Plio-Quaternary aquifer in this region.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Abid, K., Zouari, K. & Abidi, B. (2010). Identification and characterisation of hydrogeological relays of continental intercalaire aquifer of southern Tunisia. Carbonates Evaporites 25, 65–75. DOI: https://doi.org/10.1007/s13146-010-0008-3
Abuzir, S.Y., Abuzir, Y.S., (2022). Machine learning for water quality classification. Water Qual. Res. J. 57, 152–164. DOI: https://doi.org/10.2166/wqrj.2022.004
Ahmadi, R., Ouali, J., Mercier, E., Mansy, J.-L., Van-Vliet Lanoë, B., Launeau, P., Rhekhiss, F., et al.(2006). The geomorphologic responses to hinge migration in the fault-related folds in the Southern Tunisian Atlas. J. Struct. Geol. 28, 721–728. DOI: https://doi.org/10.1016/j.jsg.2006.01.004
Ayed, B., Jmal, I., Sahal, S., Mokadem, N., Saidi, S., Boughariou, E., Bouri, S. (2017). Hydrochemical characterization of groundwater using multivariate statistical analysis: the Maritime Djeffara shallow aquifer (Southeastern Tunisia). Environ. Earth Sci. 76, 821. DOI: https://doi.org/10.1007/s12665-017-7168-6
Azad, A., Karami, H., Farzin, S., Mousavi, S.F., Kisi, O. (2019). Modeling river water quality
parameters using modified adaptive neuro fuzzy inference system. Water Sci. Eng. 12, 45–54. DOI: https://doi.org/10.1016/j.wse.2018.11.001
Ben Brahim, F., Boughariou, E., Bouri, S. (2021). Multicriteria-analysis of deep groundwater quality using WQI and fuzzy logic tool in GIS: A case study of Kebilli region, SW Tunisia. J. African Earth Sci. 180, 104224. DOI: https://doi.org/10.1016/j.jafrearsci.2021.104224
Bhagat, S. K., Tung, T. M. & Yaseen, Z. M. (2020) Development of artificial intelligence for modeling wastewater heavy metal removal: State of the art, application assessment and possible future research. J. Clean. Prod. 250, 119473. DOI: https://doi.org/10.1016/j.jclepro.2019.119473
Bouaziz, S., Barrier, E., Soussi, M., Turki, M. M. & Zouari, H. (2002) Tectonic evolution of the northern African margin in Tunisia from paleo stress data and sedimentary record. Tectonophysics 357, 227–253. DOI: https://doi.org/10.1016/S0040-1951(02)00370-0
Boughriba, M., Melloul, A., Zarhloule, Y. & Ouardi, A. (2006) Extension spatiale de la salinisation des ressources en eau et modèle conceptuel des sources salées dans la plaine des Triffa (Maroc nord-oriental) “Spatial extension of salinization in groundwater and conceptual model of the brackish springs in the Triffa plain (northeastern Morocco)”. Comptes Rendus. 338, 768–774. DOI: https://doi.org/10.1016/j.crte.2006.07.007
Castany, G. (1954) Etude géologique de l’Atlas tunisien oriental. Ann. des mines la géologie, Tunis 8, 632.
Celle-Jeanton, H., Zouari, K., Travi, Y. & Daoud, A. (2001) Caractérisation isotopique des pluies en Tunisie. Essai de typologie dans la région de Sfax “Isotopic characterisation of the precipitation in Tunisia. Variations of the stable isotope compositions of rainfall events related to the origin of air masses”. Comptes Rendus l’Académie des Sci. IIA-Earth Planet. Sci. 333, 625–631. DOI: https://doi.org/10.1016/S1251-8050(01)01671-8
Cemek, B., Arslan, H., Küçüktopcu, E., Simsek, H. (2022). Comparative analysis of machine learning techniques for estimating groundwater deuterium and oxygen-18 isotopes. Stoch. Environ. Res. Risk Assess. 36, 4271–4285. DOI: https://doi.org/10.1007/s00477-022-02262-7
Che Nordin, N. F., Mohd, N. S., Koting, S., Ismail, Z., Sherif, M. & El-Shafie, A. (2021) Groundwater quality forecasting modelling using artificial intelligence: A review. Groundw. Sustain. Dev. 14, 100643. DOI: https://doi.org/10.1016/j.gsd.2021.100643
Çimen, Ö., Keskin, S. N. & Yıldırım, H. (2012) Prediction of Swelling Potential and Pressure in Compacted Clay. Arab. J. Sci. Eng. 37, 1535–1546. DOI: https://doi.org/10.1007/s13369-012-0268-4
Dib, I., Khedidja, A., Chettah, W., (2023). Multivariate statistical analysis of the alluvial aquifer of Tadjenanet- Chelghoum Laid (Eastern Algeria). Acque Sotter. - Ital. J. Groundw. 45:643. DOI: https://doi.org/10.7343/as-2023-643
Edmunds, W. M., Guendouz, A. H., Mamou, A., Moulla, A., Shand, P. & Zouari, K. (2003). Groundwater evolution in the Continental Intercalaire aquifer of southern Algeria and Tunisia: trace element and isotopic indicators. Appl. Geochemistry 18, 805–822. DOI: https://doi.org/10.1016/S0883-2927(02)00189-0
Elshaarawy, M.K., Hamed, A.K. (2024). Predicting discharge coefficient of triangular side orifice using ANN and GEP models. Water Sci. 38, 1–20. DOI: https://doi.org/10.1080/23570008.2023.2290301
Ferjani, A. Ben, Burollet, P. F. & Mejri, F. (1990) Petroleum geology of Tunisia. Enterprise tunisienne d’activités pétrolières.
Fontes, J. C. (1976) Isotopes du milieu et cycles des eaux naturelles: quelques aspects. These Dr. d’Etat, Univ. Pierre Marie Curie. DOI: https://doi.org/10.1051/lhb/1976010
Fritz, P., Silva Hennings, C., Suzuki, O. & Salati, E. (1979) Isotope hydrology in northern Chile. In: Isotope hydrology 1978.
Georgescu, P. L., Moldovanu, S., Iticescu, C., Calmuc, M., Calmuc, V., Topa, C. & Moraru, L. (2023) Assessing and forecasting water quality in the Danube River by using neural network approaches. Sci. Total Environ. 879, 162998. DOI: https://doi.org/10.1016/j.scitotenv.2023.162998
Gonfiantini, R., Conrad, G., Fontes, J. C., Sauzay, G. & Payne, B. R. (1974). Etude isotopique de la nappe du Continental Intercalaire et de ses relations avec les autres nappes du Sahara septentrional “Isotopic study of the continental intercalary nappe and its relations with the other nappes of the northern Sahara”. Isot. Tech. Groundw. Hydrol. 1, 227–241.
Grassi, S., Cortecci, G. & Squarci, P. (2007). Groundwater resource degradation in coastal plains: The example of the Cecina area (Tuscany – Central Italy). Appl. Geochemistry 22, 2273–2289. DOI: https://doi.org/10.1016/j.apgeochem.2007.04.025
Hadj Ali, M. Ben, Jedoui, Y., Dali, T., Salem, N. Ben & Memmi, L. (1985). Carte géologique de la Tunisie à 1/500,000 “Geological map of Tunisia 1/500000”. Off Nat Mines, Serv Geol Nat Tunisie.
Islam Khan, M.S., Islam, N., Uddin, J., Islam, S., Nasir, M.K. (2022). Water quality prediction and classification based on principal component regression and gradient boosting classifier approach. J. King Saud Univ. - Comput. Inf. Sci. 34, 4773–4781. DOI: https://doi.org/10.1016/j.jksuci.2021.06.003
Jemai, S., Kallel, A., Agoubi, B., & Abida, H. (2022). Spatial and temporal rainfall variability and its controlling factors under an arid climate condition: case of Gabes Catchment, Southern Tunisia. Environ. Develop. Sustain. 24, 5496–5513. DOI: https://doi.org/10.1007/s10668-021-01668-7
Kattan, Z. (2008). Estimation of evaporation and irrigation return flow in arid zones using stable isotope ratios and chloride mass-balance analysis: Case of the Euphrates River, Syria. J. Arid Environ. 72, 730–747. DOI: https://doi.org/10.1016/j.jaridenv.2007.10.011
Keskin, T. E., Düğenci, M. & Kaçaroğlu, F. (2015). Prediction of water pollution sources using artificial neural networks in the study areas of Sivas, Karabük and Bartın (Turkey). Environ. Earth Sci. 73, 5333–5347. DOI: https://doi.org/10.1007/s12665-014-3784-6
Khalil, A., Almasri, M.N., McKee, M., Kaluarachchi, J.J. (2005). Applicability of statistical learning algorithms in groundwater quality modeling. Water Resour. Res. 41, 1–16. DOI: https://doi.org/10.1029/2004WR003608
Khullar, S., Singh, N. (2021). Machine learning techniques in river water quality modelling: A research travelogue. Water Supply 21, 1-13. DOI: https://doi.org/10.2166/ws.2020.277
Kouadri, S., Elbeltagi, A., Islam, A.R.M.T., Kateb, S. (2021). Performance of machine learning methods in predicting water quality index based on irregular data set: application on Illizi region (Algerian southeast). Appl. Water Sci. 11, 1–20. DOI: https://doi.org/10.1007/s13201-021-01528-9
Kouzana, L., Mammou, A. Ben & Felfoul, M. S. (2009). Seawater intrusion and associated processes: case of the Korba aquifer (Cap-Bon, Tunisia). Comptes Rendus 341, 21–35. DOI: https://doi.org/10.1016/j.crte.2008.09.008
Kraiem, Z., Zouari, K. & Chkir, N. (2024a). Accurate prediction of salinity in Chott Djerid shallow aquifers, southern Tunisia: Machine learning model development. Water Sci. 38, 33–47. DOI: https://doi.org/10.1080/23570008.2023.2294535
Kraiem, Z., Zouari, K. & Trabelsi, R. (2024b). Harnessing machine learning tools for water quality assessment in the Kebili shallow aquifers, Southwestern Tunisia. Acta Geochim. 43, 1065–1086. DOI: https://doi.org/10.1007/s11631-024-00689-z
Krimissa, S., Michelot, J.-L., Bouchaou, L., Mudry, J. & Hsissou, Y. (2004). Sur l’origine par altération du substratum schisteux de la minéralisation chlorurée des eaux d’une nappe côtière sous climat semi-aride (Chtouka-Massa, Maroc) “About the origin of chloride in groundwater from a coastal aquifer under semi-arid climate (Chtouka-Massa, Morocco)” . Comptes rendus. 336, 1363–1369. DOI: https://doi.org/10.1016/j.crte.2004.08.003
Lallahem, S., Mania, J., Hani, A., Najjar, Y. (2005). On the use of neural networks to evaluate groundwater levels in fractured media. J. Hydrol. 307, 92–111. DOI: https://doi.org/10.1016/j.jhydrol.2004.10.005
Leontiadis, I. L., Payne, B. R. & Christodoulou, T. (1988). Isotope hydrology of the Aghios Nikolaos area of Crete, Greece. J. Hydrol. 98, 121–132. DOI: https://doi.org/10.1016/0022-1694(88)90209-0
Maliki, A., Krimissa, M., Michelot, J.-L. & Zouari, K. (2000). Relation entre nappes superficielles et aquifère profond dans le bassin de Sfax (Tunisie) “Relationship between shallow and deep aquifers in the Sfax basin (Tunisia). Comptes Rendus l’Académie des Sci. - Ser. IIA - Earth Planet. Sci. 331, 1–6. DOI: https://doi.org/10.1016/S1251-8050(00)01386-0
Maroua, B.A., Nouiri, I., Tarhouni, J., (2015). Spatio-temporal variation of standardized precipitation index (spi) in tunisia and mapping of degree of drought severity for the period 1973-2015. 2nd ICIEM 2016, International Conference on Integrated Environmental Management for Sustainable Development
Mastrocicco, M. (2021). Studies on water resources salinization along the Italian coast: 30 years of work. Acque Sotter. - Ital. J. Groundw. 39:537. DOI: https://doi.org/10.7343/as-2021-537
Pham, Q. B., Mohammadi, B., Moazenzadeh, R., Heddam, S., Zolá, R. P., Sankaran, A., Gupta, V., et al. (2023). Prediction of lake waterlevel fluctuations using adaptive neuro-fuzzy inference system hybridized with metaheuristic optimization algorithms. Appl. Water Sci. 13, 13. DOI: https://doi.org/10.1007/s13201-022-01815-z
Pritha Bhandari (2019). Descriptive Statistics|Definitions, Types, Examples. scribbr.com. Retrieved April 8, 2024, from https://www.scribbr.com/statistics/descriptive-statistics/
Qin, D., Qian, Y., Han, L., Wang, Z., Li, C. & Zhao, Z. (2011). Assessing impact of irrigation water on groundwater recharge and quality in arid environment using CFCs, tritium and stable isotopes, in the Zhangye Basin, Northwest China. J. Hydrol. 405, 194–208. DOI: https://doi.org/10.1016/j.jhydrol.2011.05.023
Ramos-Leal, J. A., Martínez-Ruiz, V. J., Rangel-Mendez, J. R. & Alfaro de la Torre, M. C. (2007). Hydrogeological and mixing process of waters in aquifers in arid regions: a case study in San Luis Potosi Valley, Mexico. Environ. Geol. 53, 325–337. DOI: https://doi.org/10.1007/s00254-007-0648-3
Rapti-Caputo, D. & Martinelli, G. (2009). The geochemical and isotopic composition of aquifer systems in the deltaic region of the Po River plain (northern Italy). Hydrogeol. J. 17, 467–480. DOI: https://doi.org/10.1007/s10040-008-0370-6
Rashid, A., Kumari, S. (2023). Performance evaluation of ANN and ANFIS models for estimating velocity and pressure in water distribution networks. Water Supply 23, 3925–3949. DOI: https://doi.org/10.2166/ws.2023.224
Rodríguez, R., Pastorini, M., Etcheverry, L., Chreties, C., Fossati, M., Castro, A., Gorgoglione, A., (2021). Water-Quality Data Imputation with a High Percentage of Missing Values: A Machine Learning Approach. Sustainability 13, 6318. DOI: https://doi.org/10.3390/su13116318
Sahal, S. & Kamel, S. (2018). Investigation of water quality origins (hydrochemical, mineralogical and isotopic) in the Jeffara of Medenine aquifer system (South-Eastern Tunisia). J. Water Supply Res. Technol. 67, 586–606. DOI: https://doi.org/10.2166/aqua.2018.019
Schiavo, M., Giambastiani, B. M. S., Greggio, N., Colombani, N., Mastrocicco, M. (2024). Geostatistical assessment of groundwater Arsenic contamination in the Padana Plain. Sci. Total Environ. 931, 172998. DOI: https://doi.org/10.1016/j.scitotenv.2024.172998
Smida, H., Tarki, M., Gammoudi, N., Dassi, L. (2023). GIS-based multicriteria and artificial neural network (ANN) investigation for the assessment of groundwater vulnerability and pollution hazard in the Braga shallow aquifer (Central Tunisia): A critical review of generic and modified DRASTIC models. J. Contam. Hydrol. 259, 104245. DOI: https://doi.org/10.1016/j.jconhyd.2023.104245
Socki RA, Karlsson HR, Gibson EK Jr. (1992). Extraction technique for the determination of oxygen-18 in water using preevacuated glass vials. Anal Chem. 64, 829-31. DOI: https://doi.org/10.1021/ac00031a026
Sokono, Y., Diallo, O., Sy, L. B., Baubion, C., Latrech, D. & Mamou, A. (2008). The North-Western Sahara Aquifer System (Algeria, Tunisia, Libya): Concerted management of a transboundary water basin. Retrieved from http://www.ossonline.org/sites/default/files/publications/OSS-SASS-CSn1_En.pdf
Soro, GE, Anouman DL, Goula BI, TA,Srohorou B, Savane I. (2014). Caractérisation des séquences desécheresse météorologique à diverses échelles de temps en climat de type Soudanais : Cas de l’extrNord-Ouestuest de la Cote d’Ivoire “Characterization of metrological drought sequences at various time scales in Sudanese-Type climate: Case of the northwest west of Cote d’Ivoire. Larhyss Journal 18, 107-124.
Subyani, A. M. (2004). Use of chloride-mass balance and environmental isotopes for evaluation of groundwater recharge in the alluvial aquifer, Wadi Tharad, western Saudi Arabia. Environ. Geol. 46, 741–749. DOI: https://doi.org/10.1007/s00254-004-1096-y
Taherian, P., Joodavi, A. (2021). Hydrogeochemical characteristics and source identification of salinity in groundwater resources in an arid plain , northeast of Iran: implication for drinking and irrigation purposes. Acque Sotter. - Ital. J. Groundw. 67, 502. DOI: https://doi.org/10.7343/as-2021-502
Taylor, C. B. (1976). IAEA isotope hydrology laboratory. Vienna Int. At. Energy Agency. Tech. Proced. note (19).
Trabelsi, R., Kacem, A., Zouari, K. & Rozanski, K. (2009). Quantifying regional groundwater flow between Continental Intercalaire and Djeffara aquifers in southern Tunisia using isotope methods. Environ. Geol. 58, 171–183. DOI: https://doi.org/10.1007/s00254-008-1503-x
Trabelsi, R., Zaïri, M., Smida, H. & Dhia, H. Ben. (2005). Salinisation des nappes côtières: cas de la nappe nord du Sahel de Sfax, Tunisie “Salinization of coastal aquifers: case of the North Sfax Sahel aquifer, Tunisia”. Comptes Rendus 337, 515–524. DOI: https://doi.org/10.1016/j.crte.2005.01.010
Uddin, M.G., Nash, S., Rahman, A., Olbert, A.I. (2023). Assessing optimization techniques for improving water quality model. J. Clean. Prod. 385, 135671.
Uddin, M.G., Nash, S., Rahman, A., Olbert, A.I., (2023). Assessing optimization techniques for improving water quality model. J. Clean. Prod. 385, 135671. DOI: https://doi.org/10.1016/j.jclepro.2022.135671
Wederni, K., Schiavo, M., Boulbaba, H., Hamed, Y., Bouri, S., and Colombani, N. (2024) SEAWAT modelling scenarios evaluating links among the Southern Gabès (TN) confined aquifer and the Mediterranean Sea. Water 16, 2685. DOI: https://doi.org/10.3390/w16192865
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., François, R., Grolemund, G., et al. (2019). Welcome to the Tidyverse. J. Open Source Softw. 4, 1686. DOI: https://doi.org/10.21105/joss.01686
Yaseen, Z. M. (2021). An insight into machine learning models era in simulating soil, water bodies and adsorption heavy metals: Review, challenges and solutions. Chemosphere 277, 130126. DOI: https://doi.org/10.1016/j.chemosphere.2021.130126
Zammouri, M., Siegfried, T., El-Fahem, T., Kriâa, S. & Kinzelbach, W. (2007). Salinization of groundwater in the Nefzawa oases region, Tunisia: results of a regional-scale hydrogeologic approach. Hydrogeol. J. 15, 1357–1375. DOI: https://doi.org/10.1007/s10040-007-0185-x
Zaqoot, H.A., Hamada, M., Miqdad, S. (2018). A Comparative Study of Ann For Predicting Nitrate Concentration In Groundwater Wells in The Southern Area Of Gaza Strip. Appl. Artif. Intell. 32, 727–744. DOI: https://doi.org/10.1080/08839514.2018.1506970

How to Cite

Kraiem, Z., Zouari, K., Hleimi, A., & Derbel Fetoui, H. (2025). Reassessment of Plio-Quaternary aquifer mineralization (Sidi Mansour plain, Southern Tunisia): a machine learning approach. Acque Sotterranee - Italian Journal of Groundwater, 14(1). https://doi.org/10.7343/as-2025-804

Similar Articles

<< < 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.