Radiological environmental monitoring of groundwater around phosphate deposits in North Africa-Southern Tunisia: geochemical, environmental and health factors

Submitted: 23 July 2024
Accepted: 17 March 2025
Published: 31 March 2025
Abstract Views: 167
PDF: 16
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Groundwater contamination is a global problem that has a significant impact on human health and environmental/biota services. Southern Tunisia’s atmospheric, sediments and deep hydrothermal naturally contain radioactive isotopes originating primarily from Eocene/Ypresian phosphate deposits and extracted from the great hydrothermal reservoir of North Africa (North Western Sahara Aquifer System). These apatite deposits can be enriched in Uranium-238 and its daughter isotopes. This can have harmful effects on both the human life and the environment. The changing climate amplifies the devastating impacts of nuclear radiation resulting from phosphate mining and industry sectors particularly in Southern Tunisia. The phosphate nodules carrying radioactive elements from the Eocene have been redistributed into more recent geological formations. This has led to their widespread distribution throughout the Tunisian southern region. The results of measurements relating to natural radioactivity in southern Tunisia demonstrate that the various components’ values (238U, 232Th, 226Ra, and 40K) show significant variations depending on the location (0.05 mSv/h < gamma radiation dose < 0.36 mSv/h in the air, 0.06 mSv/h < gamma radiation dose < 0.36 mSv/h in the soil and between 0.18-0.24 mSv/y in groundwater). However, the gamma radiation levels and the overall radioactivity are high in the vicinity of phosphate deposits exceeding the standards set by the International Atomic Energy Agency of 0.3 mSv/h. This is due to the persistent presence of a dusty cloud containing metallurgical and radioactive pollutants above the phosphate mines and the hydrothermal groundwater. Influenced by meteorological parameters such as wind velocity, temperature, fog, and precipitation, groundwater hydrodynamic circulation, such pollutants are transported to neighboring regions. Mining of the Eocene deposits and related activities caused rising levels of air, soil and groundwater radioactivity on the western side. Intensified contamination can manifest in various ways and may have severe impacts on the human health and the environment.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Al Zahrani, J., Alharbi, W., Abbady, AG. (2011). Radiological impacts of natural radioactivity and heat generation by radioactive decay of phosphorite deposits from Northwestern Saudi Arabia. Journal of Basic and Applied Scientific Research, 5, 683-690.
Benes, P., Šebesta, F., Sedlacek, J., Obdržálek, M., Sandrik, R., Obdržálek, M. (1983). Particulate forms of radium and barium in uranium mine waste waters and receiving river waters. Water Res. 17, 619-624. DOI: https://doi.org/10.1016/0043-1354(83)90230-0
Besser, H., Hamed, Y. (2019). Causes and risk evaluation of oil and brine contamination in the Lower Cretaceous Continental Intercalaire aquifer in the Kebili region of southern Tunisia using chemical fingerprinting techniques. Environmental Pollution, 253, 412 - 423. https://doi.org/10.1016/j.envpol.2019.07.020. DOI: https://doi.org/10.1016/j.envpol.2019.07.020
Boschetti, T., Hamed, Y., Hadji, R., Barbieri, M., Gentilucci, M., Rossi, M., Khalil, R., Khan, SD., Asghar, B., Al-Omran, A., Elaloui, E. (2025). Using principal component analysis to distinguish sources of radioactivity and nitrates contamination in Southern Tunisian groundwater samples. Journal of Geochemical Exploration 271, 107670. https://doi.org/10.1016/j.gexplo.2025.107670. DOI: https://doi.org/10.1016/j.gexplo.2025.107670
Boujlel, B., Hamed, H., Slimene, F., Ben Ali, R., Belhammami, K., Hamed, Y., Ben Dhia, H. (2008). Evolution of research activities of Gafsa Phosphate Company. In: 22nd Colloquim of African Geology and 13th conference of Geological Society of Africa Hammamet, Tunisia, p. 4-6.
Boujlel, H., Daldoul, G., Tlili, H., Souissi, R., Chebbi, N., Fattah, N., Souissi, F. (2019). The beneficiation processes of low-grade sedimentary phosphates of tozeur-nefta deposit (Gafsa-Metlaoui Basin: South of Tunisia). Minerals, 9(1), 2. https://doi.org/10.3390/min9010002. DOI: https://doi.org/10.3390/min9010002
Brookshaw, D., Pattrick, R., Lloyd, J., and Vaughan, D. (2012). Microbial effects on mineral-radionuclide interactions and radionuclide solid‐phase capture processes. Mineral Mag 76: 777-806. DOI: https://doi.org/10.1180/minmag.2012.076.3.25
Castany, G. (1981). Hydrogeology of deep aquifers. The hydrogeological basin as the basis of groundwater management. Episodes 3, 18-22. DOI: https://doi.org/10.18814/epiiugs/1981/v4i3/004
CEU. (2013). Council Directive 2013/51/EURATOM of 22 October 2013 laying down requirements for the protection of the health of the general public with regard to radioactive substances in water intended for human consumption, Official Journal of the European Union L 296. 12-21. http://data.europa.eu/eli/dir/2013/51/oj.
Chauhan, P., Chauhan, R., Gupta, M. (2013). Estimation of naturally occurring radionuclides in fertilizers using gamma spectrometry and elemental analysis by XRF and XRD techniques. Microchemical Journal, 106, 73-78. https://doi.org/10.1016/j.microc.2012.05.007. DOI: https://doi.org/10.1016/j.microc.2012.05.007
Chellam, S., Clifford, D.A. (2002). Physical-Chemical Treatment of Groundwater Contaminated by Leachate from Surface Disposal of Uranium Tailings. J. Environ. Eng., 128, 942-952. DOI: https://doi.org/10.1061/(ASCE)0733-9372(2002)128:10(942)
Colman, AS., & Holland, HD. (2000). The Global Diagenetic Flux of Phosphorus from Marine Sediments to the Oceans: Redox Sensitivity and the Control of Atmospheric Oxygen Levels.‏ DOI: https://doi.org/10.2110/pec.00.66.0053
CRDA (Commissariat Régional du Développement Agricole). (2021). Hydrological Annual of the period 1990-72021, Tunisia.
DOE. (2010). National Primary Drinking Water Regulations, 40 CFR Part 141, U.S. Environmental Protection Agency.
Duval, JS., Fukumoto, LE., Fukumoto, JM., Snyder, SL. (2004). Geology and Indoor Radon in Schools of the Palos Verdes Peninsula Unified School District, Palos Verdes Peninsula, California. U.S. Geological Survey, Reston, VA, USA. DOI: https://doi.org/10.3133/ofr20041050
El Gayar, A., Hamed, Y. (2017). Climate change and water resources management in Arab countries. Euro-Mediterranean Conference for Environmental Integration, 89-91. DOI: https://doi.org/10.1007/978-3-319-70548-4_31
EPA (Environmental Protection Agency). (2004). www.epa.sa.gov.au/files/8238_info_photosmog.pdf. Accessed 20 November 2022.
Federal Remediation Technologies Roundtable. Remediation Technologies Screening Matrix and Reference Guide, Version 4.0: Adsorption/Absorption. 2002. Available online: http://www.frtr.gov/matrix2/section4/4-44.html (accessed on 3 June 2021).
Garbaya, H., Jraba, A., Khadimallah, MA., Elaloui, E. (2021). The Development of a New Phosphogypsum-Based Construction Material: A Study of the Physicochemical, Mechanical and Thermal Characteristics. Materials, 14, 7369. https://doi.org/10.3390/ma14237369. DOI: https://doi.org/10.3390/ma14237369
Gascoyne, M. (1989). High levels of uranium and radium in groundwaters at Canada's Underground Research Laboratory, Lac du Bonnet, Manitoba, Canada, Applied Geochemistry, v. 4, p. 577-591. DOI: https://doi.org/10.1016/0883-2927(89)90068-1
Guendouz, A., Moulla, A. S., Edmunds, W. M., Shand, P., Poole, J., Zouari, K., & Mamou, A. (1997). Palaeoclimatic information contained in groundwaters of the Grand Erg Oriental, North Africa. In Isotope Techniques in the Study of Past and Current Environmental Changes in the Hydrosphere and the Atmosphere. Proceedings of Vienna Symposium (p. 555).
Guimond, RJ., Hardin, JM. (1989). Radioactivity released from phosphate-containing fertilizers and from gypsum. International Journal of Radiation Applications and Instrumentation. Part C, 34, 309-315. https://doi.org/10.1016/1359-0197(89)90238-5. DOI: https://doi.org/10.1016/1359-0197(89)90238-5
Hamami, H., El Alaoui, M., Beltifa, M., El Guettari, M. (1880). Exploration of phosphate Levels in Gafsa Basin (Jallabia). National archive. p10. Tunis.
Hamed, Y., Jallouli, H., Khelifi, F., Garbaya, H., Hadji, R., Elaloui, E. (2025). Radioactivity of the unconventional uranium resources from phosphate rock in Tunisia-remediation strategies. Euro-Mediterranean Journal for Environmental Integration. DOI: 10.1007/s41207-025-00765-7. DOI: https://doi.org/10.1007/s41207-025-00765-7
Hamed, Y., Ahmadi, R., Demdoum, A., Bouri, S., Gargouri, I., Ben Dhia, H., Al-Gamal, S., Laouar, R., Choura, A. (2014). Use of geochemical, isotopic, and age tracer data to develop models of groundwater flow: A case study of Gafsa mining basin-Southern Tunisia. Journal of African Earth Sciences, 100, 428 - 436. https://doi.org/10.1016/j.jafrearsci.2014.07.0121464-343X. DOI: https://doi.org/10.1016/j.jafrearsci.2014.07.012
Hamed, Y., Ahmadi, R., Hadji, R., Mokadem, N., Ben Dhia, H., Ali, W. (2013). Groundwater evolution of the Continental Intercalaire aquifer of Southern Tunisia and a part of Southern Algeria: use of geochemical and isotopic indicators. Desalination and Water Treatment, 52(12), 1990-1996. https://doi.org/10.1080/19443994.2013.806221. DOI: https://doi.org/10.1080/19443994.2013.806221
Hamed, Y., Ayadi, Y., Hadji, R., Ben Saad, A., Gentilucci, M., Elaloui, E. (2024a). Environmental Radioactivity, Ecotoxicology (238U, 232Th and 40K) and Potentially Toxic Elements in Water and Sediments from North Africa Dams. Sustainability 2024, 16(2), 490; https://doi.org/10.3390/su16020490. DOI: https://doi.org/10.3390/su16020490
Hamed, Y., Dassi, L., Ahmadi, R., Ben Dhia, H. (2008). Geochemical and isotopic study of the multilayer aquifer system in the Moulares-Redayef basin, southern Tunisia. Hydrological sciences journal, 53(6), 1241-1252. https://doi.org/10.1623/hysj.53.6.1241. DOI: https://doi.org/10.1623/hysj.53.6.1241
Hamed, Y., Dassi, L., Tarki, M., Ahmadi, R., Mehdi, K., Ben Dhia, H. (2010). Groundwater origins and mixing pattern in the multilayer aquifer system of the Gafsa-south mining district: a chemical and isotopic approach. Environmental Earth Sciences, 63 (6), 1355-1368. https://doi.org/10.1007/s12665-010-0806-x. DOI: https://doi.org/10.1007/s12665-010-0806-x
Hamed, Y., Gentilucci, M., Mokadem, N., Khalil, R., Ayadi, Y., Hadji, R., Elaloui, E. (2024b). Assessment and Mitigation of Groundwater Contamination from Phosphate Mining in Tunisia: Geochemical and Radiological Analysis. Hydrology 2024, 11, 84. https://doi.org/10.3390/hydrology11060084. DOI: https://doi.org/10.3390/hydrology11060084
Hamed, Y., Hadji, R., Ncibi, K., Hamad, A., Ben Saad, A., Melki, A., Khelifi, F., Mokadem, N., Mustafa, E. (2022b). Modelling of potential groundwater artificial recharge in the transboundary Algero‐Tunisian Basin (Tebessa‐Gafsa): The application of stable isotopes and hydroinformatics tools. Irrigation and Drainage, 71(1), 137-156. https://doi.org/10.1002/ird.2647. DOI: https://doi.org/10.1002/ird.2647
Hamed, Y., Hadji, R., Redhaounia, B., Zighmi, K., Bâali, F., El Gayar, A. (2018). Climate impact on surface and groundwater in North Africa: a global synthesis of findings and recommendations. Euro-Mediterranean Journal for Environmental Integration, 3 (1), 1-15. https://www.researchgate.net/publication/326330155. DOI: https://doi.org/10.1007/s41207-018-0067-8
Hamed, Y., Houda, B., Ahmed, M., Hadji, R., Ncibi, K. (2023). North Western Sahara aquifer system hydrothermal and petroleum reservoirs dynamics: a comprehensive overview. Arabian Journal of Geosciences, 16(4), 247. https://doi.org/10.1007/s12517-023-11324-1. DOI: https://doi.org/10.1007/s12517-023-11324-1
Hamed, Y., Khelifi, F., Houda, B., Ben Sâad, A., Ncibi, K., Hadji, R., Melki, A., Hamad, A. (2022a). Phosphate mining pollution in southern Tunisia: environmental, epidemiological, and socioeconomic investigation. Environment, Development and Sustainability, 1-18. https://doi.org/10.1007/s10668-022-02606-x. DOI: https://doi.org/10.1007/s10668-022-02606-x
Hamlat, M.S., Djeffal, S., Kadi, H. (2001). Assessment of radiation exposures from naturally occurring radioactive materials in the oil and gas industry, Applied Radiation and Isotopes, 55, p. 141-146. DOI: https://doi.org/10.1016/S0969-8043(01)00042-2
Hartmann, A., Hunot, S., Michel, PP., Muriel, MP., Vyas, S., Faucheux, BA., Mouatt-Prigent, A., Turmel, H., Srinivasan, A., Ruberg, M., Evan, GI., Agid, Y., Hirsch, EC. (2000). Caspase-3: a vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson's disease. Proceedings of the National Academy of Sciences. 97(6), 2875-2880. https://doi.org/10.1073/pnas.040556597. DOI: https://doi.org/10.1073/pnas.040556597
Hazou, E., Dzagli, MM., Ndontchueng, MM., Konzou, E., Patchali, TE., Kola, P., Zorko, B. (2023). Assessment of radiation hazards related to phosphate ore processing around Kpémé plant in Togo: Multivariate statistical approach. International Journal of Environmental Science and Technology, 20(1), 307-320. https://doi.org/10.1007/s13762-022-04054-6. DOI: https://doi.org/10.1007/s13762-022-04054-6
Hidouri, N., Moussaoui, Z., Sleimi, N., Hamed, Y., Hamzaoui-Azzaza, F. (2024). Soil contamination by trace elements and radioelements and related environmental risks in agricultural soils of the M’Dhilla Basin (southwestern Tunisia). Environ Monit Assess. 196:1024. https://doi.org/10.1007/s10661-024-13202-z. DOI: https://doi.org/10.1007/s10661-024-13202-z
Hidouri, N., Sleimi, N., Missaoui, R., Jraba, A., Yousaf, B., Hamed, Y. (2023). Assessment of heavy metal vertical distribution and health risk in agricultural soil of typical peri-urban area in Southwestern Tunisia. Water, Air, & Soil Pollution. 234 (6), 1-18. DOI: https://doi.org/10.1007/s11270-023-06335-3
IAEA. (International Atomic Energy Agency). (2011). Radiation protection and safety of radiation sources: International Basic Safety Standards. IAEA Safety Standards Series, No. GSR Part 3.
IAEA. (2014). Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards, IAEA Safety Standards Series No. GSR Part 3, International Atomic Energy Agency, Vienna.
Islam, MM., Farag, E., Eltom, K., Hassan, MM., Bansal, D., Schaffner, M., Medlock, JM., Al-Romaihi, H., Mkhize-Kwitshana, Z. (2021). Rodent ectoparasites in the Middle East: A systematic review and meta-analysis. Pathogens, 10(2), 139. https://doi.org/10.3390/pathogens10020139. DOI: https://doi.org/10.3390/pathogens10020139
Jatmiko, AR., Suryani, E., Octabriyantiningtyas, D. (2019a). The analysis of greenhouse gas emissions mitigation: A system thinking approach (Case study: East Java). Procedia Computer Science, 161, 951-958. https://doi.org/10.1016/j.procs.2019.11.204. DOI: https://doi.org/10.1016/j.procs.2019.11.204
Khelifi, F., Batool, S., Kechiched, R., Hamed, Y. (2024). Abundance, distribution, and ecological/environmental risks of critical rare earth elements (REE) in phosphate ore, soil, tailings, and sediments: application of spectroscopic fingerprinting. Journal of Soils and Sediments 24(5):1-20. DOI:10.1007/s11368-024-03771-4. DOI: https://doi.org/10.1007/s11368-024-03771-4
Khelifi, F., Caporale, A.G., Hamed, Y., & Adamo, P. (2021a). Bioaccessibility of potentially toxic metals in soil, sediments and tailings from a north Africa phosphate-mining area: Insight into human health risk assessment. Journal of Environmental Management, 279, 111634.‏ DOI: https://doi.org/10.1016/j.jenvman.2020.111634
Khelifi, F., Mokadem, N., Liu, G., Yousaf, B., Zhou, H., Ncibi, K., Hamed, Y. (2021b). Occurrence, contamination evaluation and health risks of trace metals within soil, sediments and tailings in southern Tunisia‏. ‏International Journal of Environmental Science and Technology, 1-14‏. DOI: https://doi.org/10.1007/s13762-021-03531-8
Mabrouk, L., Mabrouk, W., Mansour, HB. (2020). High leaf fluctuating asymmetry in two native plants growing in heavy metal-contaminated soil: the case of Metlaoui phosphate mining basin (Gafsa, Tunisia). Environmental Monitoring and Assessment, 192(6), 1-15. https://doi.org/10.1007/s10661-020-08385-0. DOI: https://doi.org/10.1007/s10661-020-08385-0
Melki, A., Khelifi, F., Gad, MF., Abida, H. (2022). Prospective assessment of the water balance of the Northern Gafsa Aquifer, South-western Tunisia. Environment, Development and Sustainability, 24(1), 1359-1375. https://doi.org/10.1007/s10668-021-01500-2. DOI: https://doi.org/10.1007/s10668-021-01500-2
Mohamed Sathik, R., Taeib, D., Ben Brahim, A. (2014). Chemical and mineralogy characteristics of dust collected near the phosphate mining basin of Gafsa (South-Western of Tunisia). Journal of Environmental and Analytical Toxicology, 4 (6). https://doi.org/10.4172/2161-0525.1000234.
Mohamed Sathik, R., Taieb, D., Ben Brahim, A. (2015). Evaluation of Nitrogen Oxides pollution in industrial area, Mdhilla (mining basin of Gafsa, south-western of Tunisia) with aid of GIS. In International journal of scientific research and engineering technology (IJSET), ISSN 2356-5608. https://www.researchgate.net/publication/272087908.
Mokadem, N., Hamed, Y., Ben Sâad, A., Gargouri, I. (2012). Atmospheric pollution in North Africa (Ecosystems-Atmosphere interactions): A case study in the mining basin of El Guettar-M’Dilla (Southwestern Tunisia). Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-013-0852-2. DOI: https://doi.org/10.1007/s12517-013-0852-2
Ncibi, K., Hamed, Y., Hadji, R., Busico, G., Benmarce, K., Missaoui, R., Wederni, K. (2023). Hydrogeochemical characteristics and health risk assessment of potentially toxic elements in groundwater and their relationship with the ecosystem: case study in Tunisia Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-022-25016-y. DOI: https://doi.org/10.1007/s11356-022-25016-y
NRC. (2006). NUREG-1757 - Consolidated Decommissioning Guidance - Decommissioning Process for Materials Licensees, Vol. 1, Rev. 2, U.S. Nuclear Regulatory Commission.
NRC. (2022). NUREG-1757 - Consolidated Decommissioning Guidance, Vol. 2, Rev. 2, U.S. Nuclear Regulatory Commission.
Olszewska-Wasiolek, M. (1995). Estimates of the occupational radiological hazard in the phosphate fertilizers industry in Poland. Radiation Protection Dosimetry, 58, 269-276.
OSS. (2003). Systeme aquifere du Sahara Septentrional une conscience du bassin hydrogeologique, vol II. Observatoire du Sahara et du Sahel, pp. 322.
OSS. (2008). The North-Western Sahara aquifer system: concerted management of transboundary water Basin. Sahara Sahel Obs. 48.
Pfister, H., Philipp, G., Pauly, H. (1976). Population dose from natural radionuclides in phosphate fertilizers. Radiation and Environmental Biophysics, 13, 247-261. https://doi.org/10.1007/BF01330769. DOI: https://doi.org/10.1007/BF01330769
Radhouane, L. (2013). Climate change impacts on North African countries and on some Tunisian economic sectors. Journal of Agriculture and Environment for International Development, 107(1), 101-113.
Sassi, AB., Sassi, S. (1999). Le cadmium associé aux dépôts phosphatés en Tunisie méridionale. Journal of African Earth Sciences, 29(3), 501-513. https://doi.org/10.1016/S0899-5362(99)00112-8. DOI: https://doi.org/10.1016/S0899-5362(99)00112-8
Selvakumar, R., Ramadoss, G., Menon, MP., Rajendran, K., Thavamani, P., Naidu, R., & Megharaj, M. (2018). Challenges and complexities in remediation of uranium contaminated soils: A review. Journal of environmental radioactivity, 192, 592-603.‏ DOI: https://doi.org/10.1016/j.jenvrad.2018.02.018
Thomas, PE. (1893). Exploration scientifique de la Tunisie. Illustrations de quelques fossiles nouveaux ou critiques des terrains tertiaires et secondaires de la Tunisie, recueillis en 1885 et 1886 par Philippe Thomas. Imprimerie Nationale, Paris.
U.S. Environmental Protection Agency. (2001). A Citizen’s Guide to Activated Carbon Treatment, December 2001. EPA/542/F-01/020. Available online: https://permanent.fdlp.gov/websites/epagov/www.epa.gov/swertio1/download/citizens/activatedcarbon.pdf (accessed on 3 June 2021).
UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation). (2000). Sources and effects of ionizing radiation: report to the General Assembly, with scientific annexes. United Nations Publications.
USEPA (US Environmental Protection Agency). (2021). https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data.
Wang, L., Tao, W., Yuan, L., Liu, Z., Huang, Q., Chai, Z., Gibson, JK., Shi, W. (2017). Rational control of the interlayer space inside two-dimensional titanium carbides for highly efficient uranium removal and imprisonment. Chemical Communications, 53(89), 12084-12087. https://doi.org/10.1039/C7CC06740B. DOI: https://doi.org/10.1039/C7CC06740B
WHO (World Health Organization). (2011). Guidelines for drinking-water quality (4th ed.). World Health Organization.
WHO. (2022). Guidelines for Drinking-Water Quality, Fourth ed., World Health Organization, Geneva.
Wu, W.M., Carley, J., Fienen, M., Mehlhorn, T., Lowe, K., Nyman, J., et al. (2006). Pilot-scale in situ bioremediation of uranium in a highly contaminated aquifer. 1. Conditioning of a treatment zone. Environ Sci Technol 40, 3978-3985. DOI: https://doi.org/10.1021/es051954y
Zeng, M., Chen, M., Huang, D., Lei, S., Zhang, X., Wang, L., Cheng, Z. (2021). Engineered two-dimensional nanomaterials: An emerging paradigm for water purification and monitoring. Materials Horizons, 8(3), 758-802. https://doi.org/10.1039/D0MH01358G. DOI: https://doi.org/10.1039/D0MH01358G
Zhang, J., Feng, L., Jian, Y., Luo, G., Wang, M., Hu, B., & Wang, N. (2022). Interlayer spacing adjusted zirconium phosphate with 2D ion channels for highly efficient removal of uranium contamination in radioactive effluent. Chemical Engineering Journal, 429, 132265. https://doi.org/10.1016/j.cej.2021.132265. DOI: https://doi.org/10.1016/j.cej.2021.132265
Zuppi, G.M., Sacchi, E. (2004). Hydrogeology as a climate recorder: Sahara-Sahel (North Africa) and the Po Plain (Northern Italy). Glob. Planet. Change 40, 79-91. DOI: https://doi.org/10.1016/S0921-8181(03)00099-7
Younes Hamed, Department of Earth Sciences, Faculty of Sciences, University of Gafsa, Laboratory for the Application of Materials to the Environment, Water and Energy, Gafsa

Department of Earth and Atmospheric Sciences, University of Houston, TX, USA.

How to Cite

Hamed, Y., Gentilucci, M., Jallouli, H., Ncibi, K., Hadji, R., Jraba, A., … Elaloui, E. (2025). Radiological environmental monitoring of groundwater around phosphate deposits in North Africa-Southern Tunisia: geochemical, environmental and health factors. Acque Sotterranee - Italian Journal of Groundwater, 14(1). https://doi.org/10.7343/as-2025-809

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.