Guardians of the aquifers: enhancing Rome’s groundwater monitoring network


Submitted: 23 August 2024
Accepted: 22 September 2024
Published: 30 September 2024
Abstract Views: 49
PDF: 28
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

  • Mauro Roma Istituto Superiore per la Ricerca e la Protezione Ambientale (ISPRA) - Servizio Geologico d’Italia, Roma, Italy.
  • Isidoro Bonfà Roma Capitale – Dip. Rifiuti e risanamenti, Italy.
  • Maria Pia Congi Istituto Superiore per la Ricerca e la Protezione Ambientale (ISPRA) - Servizio Geologico d’Italia, Roma, Italy.
  • Rossella Maria Gafà Istituto Superiore per la Ricerca e la Protezione Ambientale (ISPRA) - Servizio Geologico d’Italia, Roma, Italy.
  • Lucio Martarelli Istituto Superiore per la Ricerca e la Protezione Ambientale (ISPRA) - Servizio Geologico d’Italia, Roma, Italy.
  • Gennaro Maria Monti Istituto Superiore per la Ricerca e la Protezione Ambientale (ISPRA) - Servizio Geologico d’Italia, Roma, Italy.
  • Claudio Papiccio Roma Capitale – Dip. Rifiuti e risanamenti, Italy.
  • Angelantonio Silvi Istituto Superiore per la Ricerca e la Protezione Ambientale (ISPRA) - Servizio Geologico d’Italia, Roma, Italy.
  • Valerio Vitale Istituto Superiore per la Ricerca e la Protezione Ambientale (ISPRA) - Servizio Geologico d’Italia, Roma, Italy.
  • Francesco La Vigna Istituto Superiore per la Ricerca e la Protezione Ambientale (ISPRA) - Servizio Geologico d’Italia, Roma, Italy.

This paper proposes a methodology for managing groundwater monitoring directly in the field through a specific data entry system installed on mobile devices and a relational geographic database that allows the visualization and querying of data via a specific web interface. The study area is the city of Rome, where a monitoring system of approximately 150 piezometers and wells, currently manually monitored twice a year. The proposed method uses the Enterprise cloud platform (ESRI, 2024) managed by ISPRA-SNPA, which guarantees the repository of the data collected in an online cloud system and the use of Web applications. The data of the time series of levels and chemical-physical parameters such as temperature, pH, conductivity are freely accessible through attribute tables, graphs, and viewer elements. The results highlight numerous possibilities for expanding the network of active wells, enabling the use of groundwater resources for adaptation measures to address ongoing climate change.


Bono, P., & Boni, C. (1996) Water supply of Rome in antiquity and today Environmental Geology, 27, 126–134. https://doi.org/10.1007/BF01061685 DOI: https://doi.org/10.1007/s002540050043

Bonsor, H., Dahlqvist, P., Moosman, L., Classen, N., Epting, J., Huggenberger, P., Garica-Gil, A., Janza, M., Laursen, G., & Stuurman, R. (2017) Groundwater, geothermal modelling and monitoring at city-scale: Reviewing european practice and knowledge exchange: Tu1206 cost sub-urban wg2 report.

Capelli, G., Mazza, R., & Papiccio, C. (2007) Intrusione salina nel Delta del Fiume Tevere. Geologia, idrologia e idrogeologia del settore romano della piana costiera. “Seawater Intrusion in the Tiber River Delta. Geology, Hydrology and Hydrogeology of the Roman Sector of the Coastal Plain”, Giornale di Geologia Applicata, 5, 13-28.

ESRI (2024) ArcGIS Enterprise. Deliver industry-leading mapping and analytics to your infrastructure and the cloud. Online resources: https://enterprise.arcgis.com/en/. ESRI BeLux: https://images.app.goo.gl/S8qEhcXKA7tbPcXeA (accessed on 14 September 2024).

ESRI (2023) Collect data in Field Maps. Field Operation. Online resources: https://www.esri.com/arcgis-blog/products/field-maps/field-mobility/try-data-collection-in-arcgis-field-maps/ (accessed on 14 September 2024).

Gaitanaru, D., Gogu, C. R., Boukhemacha, M. A., Litescu, L., Zaharia, V., Moldovan, A., & Mihailovici, M. J. (2017) Bucharest city urban groundwater monitoring system. Procedia engineering, 209, 143-147. DOI: https://doi.org/10.1016/j.proeng.2017.11.140

Howard, K. W. F., Hirata, R., Warner, K., Gogu, R., & Nkhuwa D. (2015) Resilient Cities & Groundwater. In IAHStrategic Overview Series; Foster, S., & Tyson, G., Eds.; International Association of Hydrogeologists: London, UK. Available online: https://www.iges.or.jp/en/pub/resilient-cities-groundwater/en (accessed on 15 June 2022).

La Vigna, F., Alberti, L., Da Pelo, S., Ducci, D., Fabbri, P., Gargini, A., Lasagna, M., Pappalardo, G., Polemio, M., & Rusi S. (2024) Exploring the aquifers shaping Italy’s sub-urban landscape. Acque Sotterranee – Italian Journal of Groundwater. https://doi.org/10.7343/as-2024-806 DOI: https://doi.org/10.7343/as-2024-806

La Vigna, F. (2022) Review: Urban groundwater issues and resource management, and their roles in the resilience of cities. Hydrogeol J., 30, 1657–1683. https://doi.org/10.1007/s10040-022-02517-1 DOI: https://doi.org/10.1007/s10040-022-02517-1

La Vigna, F., Bonfà, I., Coppola, A. G., Corazza, A., Di Filippo, C., Ferri, G., Martelli, S., Rosa, C., & Succhiarelli, C. (2016) La città di Roma e le sue falde acquifere: dalle criticità, alle opportunità di resilienza urbana. “The City of Rome and its groundwater: from critical issues, to urban resilience opportunities”. Acque Sotterranee, 4(4), 59-70. DOI: 10.7343/AS-132-15-0159 DOI: https://doi.org/10.7343/as-132-15-0159

La Vigna, F., Mazza, R., Amanti, M., Di Salvo, C., Petitta, M., Pizzino, L., Pietrosante, A., Martarelli, L., Bonfà, I., Capelli, G., Cinti, D., Ciotoli, F., Ciotoli, G., Conte, G., Del Bon, A., Dimasi, M., Falcetti, S., Gafà, R. M., Lacchini, A., Mancini, M., Martelli, S., Mastrorillo, L., Monti, G. M., Procesi, M., Roma, M., Sciarra, A., Silvi, A., Stigliano, F., & Succhiarelli, C. (2016) Groundwater of Rome. Journal of Maps, 12(sup1), 88–93. doi: 10.1080/17445647.2016.1158669 DOI: https://doi.org/10.1080/17445647.2016.1158669

La Vigna, F., & Mazza, R. (2015) Carta Idrogeologica di Roma-Scala 1: 50.000 “Hydrogeological Map of Rome-Scale 1:50.000”. Roma Capitale. Edizioni PO. LI. GRAF, Pomezia.

Lentini, A., Meddi, E., Galve, J. P., Papiccio, C., & La Vigna, F. (2022) Preliminary identification of areas suitable for Sustainable Drainage Systems and Managed Aquifer Recharge to mitigate stormwater flooding phenomena in Rome (Italy). Acque Sotterranee, 11(4), 43–53. https://doi.org/10.7343/as-2022-590 DOI: https://doi.org/10.7343/as-2022-590

Lee, J. Y., Choi, M. J., Kim, Y.Y., & Lee, K. K. (2005) Evaluation of hydrologic data obtained from a local groundwater monitoring network in a metropolitan city, Korea. Hydrological Processes: An International Journal, 19(13), 2525-2537. DOI: https://doi.org/10.1002/hyp.5689

Lo Russo, S., & Taddia, G. (2009) Groundwater in the Urban Environment: Management Needs and Planning Strategies American Journal of Environmental Sciences, 5(4):494-500. DOI: 10.3844/ajessp.2009.493.499 DOI: https://doi.org/10.3844/ajessp.2009.494.500

Manca, F., Capelli, G., La Vigna, F., Mazza, R., & Pascarella, A. (2014) Wind-induced salt-wedge intrusion in the Tiber River mouth (Rome–Central Italy). Environmental Earth Sciences, 72, 1083-1095. DOI: https://doi.org/10.1007/s12665-013-3024-5

Mastrorillo, L., Mazza, R., Tuccimei, P., Rosa, C., & Matteucci, R. (2016) Groundwater monitoring in the archaeological site of Ostia Antica (Rome, Italy): first results. Acque Sotterranee - Italian Journal of Groundwater, 5(1). https://doi.org/10.7343/as-2016-192 DOI: https://doi.org/10.7343/as-2016-192

Mazza, R., La Vigna, F., Capelli, G., Dimasi, M., Mancini, M., & Mastrorillo, L. (2015) Hydrogeology of Rome. Acque Sotterranee - Italian Journal of Groundwater, 4(4). https://doi.org/10.7343/as-129-15-0156 DOI: https://doi.org/10.7343/as-129-15-0156

Mazza, R., & Mastrorillo, L. (2013) L’idrogeologia regionale nella pianificazione e gestione della risorsa idrica sotterranea. Il dominio vulcanico laziale (Italia centrale) “Regional hydrogeology for groundwater resource management policies. The Latium volcanic domain (central Italy)”. Acque Sotterranee - Italian Journal of Groundwater, 2(4), 41-53. https://doi.org/10.7343/as-050-13-0077 DOI: https://doi.org/10.7343/as-050-13-0077

Menberg, K., Bayer, P., Zosseder, K., Rumohr, S., & Blum, P. (2013). Subsurface urban heat islands in german cities. Science of the total environment, 442, 123-133. DOI: https://doi.org/10.1016/j.scitotenv.2012.10.043

Patton, A., Farr, G., Boon, D., James, D., Williams, B., James, L., Kendall, R., Thorpe, S., Harcombe, G., & Schofield, D. (2020) Establishing an urban geo-observatory to support sustainable development of shallow subsurface heat recovery and storage. Quarterly Journal of Engineering Geology and Hydrogeology, 53(1), 49-61. DOI: https://doi.org/10.1144/qjegh2019-020

Prinos, S. T., Lietz, A., & Irvin, R. (2002) Design of a Real-Time Ground-Water Level Monitoring Network and Portrayal of Hydrologic Data in Southern Florida. U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 01-4275. Prepared in cooperation with the SOUTH FLORIDA WATER MANAGEMENT DISTRICT. 108 pp.

Zhou, Y., Dong, D., Liu, J., & Li, W. (2013) Upgrading a regional groundwater level monitoring network for Beijing plain, China. Geoscience Frontiers, 4(1), 127-138. DOI: https://doi.org/10.1016/j.gsf.2012.03.008

Working group ISPRA, & Roma Capitale (2023) https://www.isprambiente.gov.it/it/attivita/suolo-e-territorio/idrogeologia/monitoraggio-acque-sotterranee-di-roma-capitale

Roma, M., Bonfà, I., Congi, M. P., Gafà, R. M., Martarelli, L., Monti, G. M., Papiccio, C., Silvi, A., Vitale, V., & La Vigna, F. (2024). Guardians of the aquifers: enhancing Rome’s groundwater monitoring network. Acque Sotterranee - Italian Journal of Groundwater, 13(3). https://doi.org/10.7343/as-2024-812

Downloads

Download data is not yet available.

Citations