Geospatial mapping and multivariate statistical analysis for assessing groundwater quality in Bou Arada-El Aroussa plain, Northwestern Tunisia

Submitted: 13 September 2024
Accepted: 8 February 2025
Published: 31 March 2025
Abstract Views: 20
PDF: 6
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

This paper presents an integrated study of groundwater quality for irrigation and its spatial distribution in the Bou Arada-El Arroussa plain to guide decision-makers in the development of sustainable groundwater resource management plans. Assessing water quality for irrigation in this plain involves a process that begins with statistical analysis to determine similarities between samples and group them into clusters. This is followed by principal component analysis on physico-chemical data to determine relationships between variables and visualize their independence on a correlation matrix. Statistical analyses combined with a graphical approach through diagrams such as Piper, Gibbs, Wilcox and USSL are used to better assess the properties, facies and interactions between water and minerals within the aquifer. In addition, geographic information system (GIS) tools were used to better combine water quality indices and create a map of spatial quality distribution. Clustering results and principal component analysis reveal three types of water: the first type includes samples F04, F05 and P01, characterized by high concentration of TDS. The second type consists solely of well P23, distinguished by elevated level of K+, Mg2+ and NO3 ions. The third type can be divided into two subsets: one dominated by SO42– and the other by Cl, with additional ions such as HCO3, Ca2+ and Na+. Major ions analyses of the Bou Arada-El Arroussa groundwater show that the order of ions abundance was SO42–>Cl>HCO3>Ca2+>Mg2+>NO3>K+. Piper diagrams and ion ratios revealed three water facies similar to the results obtained from the cluster analysis dendrogram: Ca-Mg-SO4, mixed and Na-Cl facies. The water hardness index (TH) classifies water samples into hard-brackish water category due to their high magnesium and calcium content, which is crucial for plant growth especially in agricultural area. The investigation of the relationship between water chemistry and mineralogical composition of the studied aquifer system reveals that all groundwater samples fall in the field corresponding to the water-rock interaction, with the exception of F04 and F05 showing a predominant evaporation. The Chadha diagram shows that the majority of samples are located in the reverse ion exchange zone, reflecting the exchange between groundwater and clay minerals. The USSL diagram shows that the majority of samples belong to the C3-S1 category, reflecting that the water is not suitable for irrigation due to the high salinity content. Evaluation of irrigation water quality using quality indices revealed that the majority of samples are within the standards for agricultural use. A multi-criteria analysis on the indices layers (SAR, SSP, PS, RSC, Na% and IWQI) created a synthesis map of the spatial distribution of the water quality. This map reveals that the western part of the Bou-Arada El Arroussa plain contains good-quality water, while the Eastern part contains the poorest quality related to the upwelling of poor-quality deep water.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Abdelfattah, M., Abdel-Aziz Abu-Bakr, H., Aretouyap, Z., Sheta, M. H., Hassan, T. M., Geriesh, M. H., Shaheen, S. E.-D., Alogayell, H. M., M. EL-Bana, E. M., & Gaber, A. (2023). Mapping the impacts of the anthropogenic activities and seawater intrusion on the shallow coastal aquifer of Port Said, Egypt. Frontiers in Earth Science, 11, 1204742. https://doi.org/10.3389/feart.2023.1204742 DOI: https://doi.org/10.3389/feart.2023.1204742
Abidi, J. H., Elzain, H. E., Sabarathinam, C., Selmane, T., Selvam, S., Farhat, B., Ben Mammou, A., & Senapathi, V. (2024). Evaluation of groundwater quality indices using multi-criteria decision-making techniques and a fuzzy logic model in an irrigated area. Groundwater for Sustainable Development, 25, 101122. https://doi.org/10.1016/j.gsd.2024.101122 DOI: https://doi.org/10.1016/j.gsd.2024.101122
Adawe, A. M., Abdi, S. J., Abdi, A. M., & Omar, A. D. (2024). Water Quality Assessment of Groundwater Using Multivariate Statistical Techniques: A Case Study of Mogadishu, Banadir Region, Somalia. American Journal of Environmental Protection, 13(1), 19–29. https://doi.org/10.11648/j.ajep.20241301.13 DOI: https://doi.org/10.11648/j.ajep.20241301.13
Amri, F. (1992). Étude par prospection électrique de la plaine El Aroussa-Bou Arda. “Electrical prospecting study of the El Aroussa-Bou Arda plain”. (p. 28) [Internal report]. Directorale general of water resources (DGRE).
Appelo, C. A. J., & Postma, D. (2004). Geochemistry, Groundwater and Pollution. CRC Press. https://doi.org/10.1201/9781439833544 DOI: https://doi.org/10.1201/9781439833544
Arfaoui, M. S., Khouni, R., Dridi, S., & Zargouni, F. (2018). Style and timing of tectonic deformation across the Bou Arada-El Fahs troughs system, Northeast Tunisia: Integration in the structural evolution of Atlas fold and thrust belt. Arabian Journal of Geosciences, 11(5), 95. https://doi.org/10.1007/s12517-018-3436-3 DOI: https://doi.org/10.1007/s12517-018-3436-3
Arora, P., Rani, N., & Anand, A. (2024). Assessment of Soil Quality of Rice Fields Under Irrigation with Different Water Sources. Current Agriculture Research Journal, 12(2), 694–704. https://doi.org/10.12944/CARJ.12.2.15 DOI: https://doi.org/10.12944/CARJ.12.2.15
Asma, B., & Şener, Ş. (2024). Appraisal of groundwater suitability and hydrochemical characteristics by using various water quality indices and statistical analyses in the Wadi Righ area, Algeria. Water Supply, 24(5), 1938–1957. https://doi.org/10.2166/ws.2024.103 DOI: https://doi.org/10.2166/ws.2024.103
Azzouz, A. (1988). Étude de la prospection électrique dans la plaine de Bou Arada-El Aroussa. “Electrical prospecting study on the Bou Arada-El Aroussa plain”. (p. 34) [Internal report]. Directorale general of water resources (DGRE).
B Patil, V. B., Pinto, S. M., Govindaraju, T., Hebbalu, V. S., Bhat, V., & Kannanur, L. N. (2020). Multivariate statistics and water quality index (WQI) approach for geochemical assessment of groundwater quality—A case study of Kanavi Halla Sub-Basin, Belagavi, India. Environmental Geochemistry and Health, 42(9), 2667–2684. https://doi.org/10.1007/s10653-019-00500-6 DOI: https://doi.org/10.1007/s10653-019-00500-6
Baird, R. B., & Eaton, A. D. (2017). Standard Methods for the Examination of Water and Wastewater (23rd ed.). American Public Health Association (APHA), of Water 678 Resource and Protection.
Bakr, N. (2013). Sustainable natural resource management in regional ecosystems: Case studies in semi-arid and humid regions [Doctor of Philosophy, Louisiana State University and Agricultural and Mechanical College]. https://doi.org/10.31390/gradschool_dissertations.806 DOI: https://doi.org/10.31390/gradschool_dissertations.806
Ben Chelbi, M., Kamel, S., Harrab, S., Rebaï, N., Melki, F., Meghraoui, M., & Zargouni, F. (2013). Tectonosedimentary evidence in the Tunisian Atlas, Bou Arada Trough: Insights for the geodynamic evolution and Africa–Eurasia plate convergence. Journal of the Geological Society, 170(3), 435–449. https://doi.org/10.1144/jgs2012-095 DOI: https://doi.org/10.1144/jgs2012-095
Ben Yagoub, J. (1979). Contribution à l’étude géologique du jebel Rihane (Atlas tunisien). “Contribution to the geological study of jebel Rihane (Tunisian Atlas)”. (Note No. 13; pp. 5–17). National Mining Office (ONM).
Besser, H., Redhaounia, B., Sana Bedoui, Ayadi, Y., Khelifi, F., & Hamed, Y. (2019). Geochemical, isotopic and statistical monitoring of groundwater quality: Assessment of the potential environmental impacts of the highly polluted CI water in Southwestern Tunisia. Journal of African Earth Sciences, 153, 144–155. https://doi.org/10.1016/j.jafrearsci.2019.03.001 DOI: https://doi.org/10.1016/j.jafrearsci.2019.03.001
Bischoff, J. L., Juliá, R., Shanks, Iii, W. C., & Rosenbauer, R. J. (1994). Karstification without carbonic acid: Bedrock dissolution by gypsum-driven dedolomitization. Geology, 22(11), 995. https://doi.org/10.1130/0091-7613(1994)022<0995:KWCABD>2.3.CO;2 DOI: https://doi.org/10.1130/0091-7613(1994)022<0995:KWCABD>2.3.CO;2
Bordbar, M., Busico, G., Sirna, M., Tedesco, D., & Mastrocicco, M. (2023). A multi-step approach to evaluate the sustainable use of groundwater resources for human consumption and agriculture. Journal of Environmental Management, 347, 119041. https://doi.org/10.1016/j.jenvman.2023.119041 DOI: https://doi.org/10.1016/j.jenvman.2023.119041
Boukhalfa, K., Soussi, M., Ozcan, E., Banerjee, S., & Tounekti, A. (2020). The Oligo-Miocene siliciclastic foreland basin deposits of northern Tunisia:Stratigraphy, sedimentology and paleogeography. Journal of African Earth Sciences, 170, 103932. https://doi.org/10.1016/j.jafrearsci.2020.103932 DOI: https://doi.org/10.1016/j.jafrearsci.2020.103932
Chadha, D. K. (1999). A proposed new diagram for geochemical classification of natural waters and interpretation of chemical data. Hydrogeology Journal, 7(5), 431–439. https://doi.org/10.1007/s100400050216 DOI: https://doi.org/10.1007/s100400050216
Clark, I. D., & Fritz, P. (1997). Environmental isotopes in hydrogeology. CRC Press/Lewis Publishers.
CRDA. (2004). Carte Agricole de la région de Siliana. “Agricultural map of the Siliana region”. [Shapefile]. Tunisian Ministry of Agriculture; Regional Commissariat for Agricultural Development (CRDA) Siliana.
Dali, T. (1994). Geological map of Gaafour No. 40 [Geological map]. National Mining Office (ONM), Directorate of Geology.
Dali, T., Mahjoub, K., & Taamallah, N. (1999). Notice explicative de la carte géologique de Bou Arada n° 34. “Explanatory note to the Bou Arada geological map No. 34”. National Mining Office (ONM), Directorate of Geology.
DGRE. (2019). Annuaire d’exploitation des nappes 2018-2019. “Groundwater exploitation directory 2018-2019”. (pp. 81–94) [Internal report]. Directorale general of water resources (DGRE).
Doneen, L. D., University of California, Davis. D. of W. S. and E., & California. Department of Water Resources. (1964). Notes on Water Quality in Agriculture (Issue ptie. 1). Department of Water Science and Engineering, University of California, Davis. https://books.google.tn/books?id=nBStYgEACAAJ
Eaton, F. M. (1950). Significance of carbonates in irrigation waters. Soil Science, 69(2), 123–134. https://doi.org/10.1097/00010694-195002000-00004 DOI: https://doi.org/10.1097/00010694-195002000-00004
ESRI. (2020). ArcGis Desktop (Version 10.8) [Computer software]. Environmental Systems Research Institute (ESRI). https://www.esri.com
Fersi, M. (1979). Estimation du ruissellement moyen annuel sur les bassins du Sud-Est, du Sud-Ouest et du Sahel Sud, Tunis. “Estimation of mean annual runoff in the South-East, South-West and South Sahel basins. Tunis”. Water and Soil Resources Department (DRES).
Gadelha, A. J. F., Rocha, C. O. D., Veras Neto, J. G., & Gomes, M. A. (2023). Multivariate statistical analysis of physicochemical parameters of groundwater quality using PCA and HCA techniques. Ecletica Quimica, 48(4), 37–47. https://doi.org/10.26850/1678-4618eqj.v48.4.2023.p37-47 DOI: https://doi.org/10.26850/1678-4618eqj.v48.4.2023.p37-47
Gallardo Ceron, F., West, J., Burke, I., Graham, J., & Colombera, L. (2023). Cluster Analysis for Hydrogeological Units Identification and Characterisation in Glaciofluvial Sediments. Fifth EAGE Conference on Petroleum Geostatistics, 1–5. https://doi.org/10.3997/2214-4609.202335042 DOI: https://doi.org/10.3997/2214-4609.202335042
Garba, A., Idris, A. M., & Gambo, J. (2023). Groundwater Quality Assessment Using Principal Component and Cluster Analysis. In M. Sherif, V. P. Singh, A. Sefelnasr, & M. Abrar (Eds.), Water Resources Management and Sustainability (Vol. 121, pp. 335–346). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-24506-0_22 DOI: https://doi.org/10.1007/978-3-031-24506-0_22
Gautam, A., Rai, S. C., Rai, S. P., Ram, K., & Sanny. (2022). Impact of anthropogenic and geological factors on groundwater hydrochemistry in the unconfined aquifers of Indo-Gangetic plain. Physics and Chemistry of the Earth, Parts A/B/C, 126, 103109. https://doi.org/10.1016/j.pce.2022.103109 DOI: https://doi.org/10.1016/j.pce.2022.103109
Guo, H., Gao, Z., & Xing, S. (2023). Water–Rock Interactions: Mineral Dissolution. In M. N. V. Prasad & M. Vithanage (Eds.), Medical Geology (1st ed., pp. 111–127). Wiley. https://doi.org/10.1002/9781119867371.ch7 DOI: https://doi.org/10.1002/9781119867371.ch7
Hamzaoui-Azaza, F., Bouhlila, R., & Gueddari, M. (2012). Characterization of the mineralization of the Triassic water table (South-East Tunisia) by geochemical and statistical methods. 36, 49–62.
Hartanto, P., & Lubis, R. F. (2023). Use the hot spring’s Chloro-Alkaline Index (CAI) for the low enthalpy prospect of the Rawadanau geothermal field. Journal of Physics: Conference Series, 2596(1), 012049. https://doi.org/10.1088/1742-6596/2596/1/012049 DOI: https://doi.org/10.1088/1742-6596/2596/1/012049
Hasbaia, M., Djerbouai, S., Khodja, H. D., Belazreg, N. E. H., Mitiche Kettab, R., & Ferhati, A. (2021). Hydrochemical analysis of groundwater quality in central Hodna Basin, Algeria: A case study. International Journal of Hydrology Science and Technology, 1(1), 1. https://doi.org/10.1504/IJHST.2021.10040507 DOI: https://doi.org/10.1504/IJHST.2021.10040507
Henchiri, M., Abidi, R., & Jemmali, N. (2015). Large euhedral quartz crystals in the Triassic dolomites and evaporites of central Tunisia: Implications for silica diagenesis in sulphate-rich and high-Mg environments. Arabian Journal of Geosciences, 8(10), 8899–8910. https://doi.org/10.1007/s12517-015-1788-5 DOI: https://doi.org/10.1007/s12517-015-1788-5
Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering, 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55 DOI: https://doi.org/10.1109/MCSE.2007.55
Jain, S., & Singh, Dr. P. (2022). A GIS-based Interpolation Technique to Predict Urban Ground Water Quality. International Journal for Research in Applied Science and Engineering Technology, 10(12), 528–538. https://doi.org/10.22214/ijraset.2022.47928 DOI: https://doi.org/10.22214/ijraset.2022.47928
Jausein, A., & Berthe, D. (1961). Geological map of J. Mansour No. 41 [Geological map]. National Mining Office (ONM), Directorate of Geology.
Karar, A., & Henni, A. (2020). Scale Inhibition in Hard Water System. In A. M. Negm, A. Bouderbala, H. Chenchouni, & D. Barceló (Eds.), Water Resources in Algeria—Part I (Vol. 97, pp. 293–318). Springer International Publishing. https://doi.org/10.1007/698_2020_530 DOI: https://doi.org/10.1007/698_2020_530
Kramer, I., & Mau, Y. (2023). Review: Modeling the Effects of Salinity and Sodicity in Agricultural Systems. Water Resources Research, 59(6), e2023WR034750. https://doi.org/10.1029/2023WR034750 DOI: https://doi.org/10.1029/2023WR034750
Li, R., Yan, Y., Xu, J., Yang, C., Chen, S., Wang, Y., & Zhang, Y. (2024). Evaluate the groundwater quality and human health risks for sustainable drinking and irrigation purposes in mountainous region of Chongqing, Southwest China. Journal of Contaminant Hydrology, 264, 104344. https://doi.org/10.1016/j.jconhyd.2024.104344 DOI: https://doi.org/10.1016/j.jconhyd.2024.104344
Li, X. (2023). Combined cluster and discriminant analysis based on hydrochemical and isotopic evidence: A case study of the Yellow River Delta in China. Advances in Computer and Engineering Technology Research, 1(1), 12. https://doi.org/10.61935/acetr.1.1.2023.P12 DOI: https://doi.org/10.61935/acetr.1.1.2023.P12
Mahjoub, K., & Dali, T. (1998). Geological map of Bou Arada No. 34 [Geological map]. National Mining Office (ONM), Directorate of Geology.
Mandal, R., Das, A., Tripathy, G. R., Sudheer, A. K., Kumar, S., Deshpande, R. D., & Padhya, V. (2023). Impact of soil salinity on groundwater chemistry in semi-arid regions in Western India: Insights from major ion and stable isotopic δ 2 H H 2 o , δ 18 o H 2 o , a n d δ 13 C D I C characteristics. Groundwater for Sustainable Development, 21, 100939. https://doi.org/10.1016/j.gsd.2023.100939 DOI: https://doi.org/10.1016/j.gsd.2023.100939
Mandloi, S., Tagore, G. S., Kulhare, P. S., Nishant, K., Bangre, S., & Bangre, J. (2024). Fertility status of different soil associations of central India. Annals of Plant and Soil Research, 26(1), 148–158. https://doi.org/10.47815/apsr.2024.10345 DOI: https://doi.org/10.47815/apsr.2024.10345
Mecibah, I., Medjani, F., Zahi, F., Djidel, M., Drouiche, A., Labar, S., & Hamilton, M.-L. (2024). Groundwater quality assessment using water quality indices and Gis within the Oued Guebli downstream subbasin (Collo plain, Northeastern Algeria). Environmental Engineering and Management Journal, 23(4), 755–770. https://doi.org/10.30638/eemj.2024.059 DOI: https://doi.org/10.30638/eemj.2024.059
Mehta, P., Jangra, M. S., Baweja, P. K., & Srivastav, A. L. (2024). Impact of climate change on rural water resources and its management strategies. In Water Resources Management for Rural Development (pp. 45–54). Elsevier. https://doi.org/10.1016/B978-0-443-18778-0.00018-0 DOI: https://doi.org/10.1016/B978-0-443-18778-0.00018-0
Meireles, A. C. M., Andrade, E. M. D., Chaves, L. C. G., Frischkorn, H., & Crisostomo, L. A. (2010). A new proposal of the classification of irrigation water. Revista Ciência Agronômica, 41(3), 349–357. https://doi.org/10.1590/S1806-66902010000300005 DOI: https://doi.org/10.1590/S1806-66902010000300005
Narvaez-Montoya, C., Mahlknecht, J., Torres-Martínez, J. A., Mora, A., & Bertrand, G. (2023, May 15). Coastal groundwater pattern recognition supported by cluster analysis. https://doi.org/10.5194/egusphere-egu23-2876 DOI: https://doi.org/10.5194/egusphere-egu23-2876
Onumanyi, A. J., Molokomme, D. N., Isaac, S. J., & Abu-Mahfouz, A. M. (2022). AutoElbow: An Automatic Elbow Detection Method for Estimating the Number of Clusters in a Dataset. Applied Sciences, 12(15), 7515. https://doi.org/10.3390/app12157515 DOI: https://doi.org/10.3390/app12157515
Oueslati, M. N. (1990). Complément de prospection électrique dans la plaine de Bou Arda-El Aroussa. “Additional electrical prospecting on the Bou Arda-El Aroussa plain”. (p. 12) [Internal report]. Directorale general of water resources (DGRE).
Ouhakki, H., El Fallah, K., & El Mejdoub, N. (2024). Spatiotemporal Interpolation of Water Quality Index and Nitrates using ArcGIS Pro for Surface Water Quality Modeling in the Oum Er-Rabia Watershed. Ecological Engineering & Environmental Technology, 25(5), 312–323. https://doi.org/10.12912/27197050/186187 DOI: https://doi.org/10.12912/27197050/186187
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12(85), 2825–2830.
Perthuisot, V. (1970). Geological map of Teboursouk No. 33 [Geological map]. Geology Department of the Ministry of Industry and Energy.
Pham, N. Q., & Nguyen, G. T. (2024). Evaluating Groundwater Quality Using Multivariate Statistical Analysis and Groundwater Quality Index. Civil Engineering Journal, 10(3), 699–713. https://doi.org/10.28991/CEJ-2024-010-03-03 DOI: https://doi.org/10.28991/CEJ-2024-010-03-03
Pierret, A., & Moran, C. J. (2011). Plant Roots and Soil Structure. In J. Gliński, J. Horabik, & J. Lipiec (Eds.), Encyclopedia of Agrophysics (pp. 628–632). Springer Netherlands. https://doi.org/10.1007/978-90-481-3585-1_121 DOI: https://doi.org/10.1007/978-90-481-3585-1_121
Radmehr, A., Bozorg-Haddad, O., & Loáiciga, H. A. (2022). Integrated strategic planning and multi-criteria decision-making framework with its application to agricultural water management. Scientific Reports, 12(1), 8406. https://doi.org/10.1038/s41598-022-12194-5 DOI: https://doi.org/10.1038/s41598-022-12194-5
Ravikumar, P., Aneesul Mehmood, M., & Somashekar, R. K. (2013). Water quality index to determine the surface water quality of Sankey tank and Mallathahalli lake, Bangalore urban district, Karnataka, India. Applied Water Science, 3(1), 247–261. https://doi.org/10.1007/s13201-013-0077-2 DOI: https://doi.org/10.1007/s13201-013-0077-2
Rel Dechangue, T., & Kabeyene Veronique, K. (2023). Use Hydrochemistry and Environmental Isotopes for the Assessment Mineralization of Groundwater in Miopliocene Aquifers in Douala 3 (Cameroon). American Journal of Water Resources, 11(1), 11–19. https://doi.org/10.12691/ajwr-11-1-2 DOI: https://doi.org/10.12691/ajwr-11-1-2
Richards, L. A. (1954). Diagnosis and Improvement of Saline and Alkali Soils: Soil Science, 78(2), 154. https://doi.org/10.1097/00010694-195408000-00012 DOI: https://doi.org/10.1097/00010694-195408000-00012
Salam, S. B., . S., & Kaushal, S. (2024). Soil management assessment framework for optimizing soil quality. International Journal of Research in Agronomy, 7(11), 01–06. https://doi.org/10.33545/2618060X.2024.v7.i11a.1910 DOI: https://doi.org/10.33545/2618060X.2024.v7.i11a.1910
Salem, S., Gaagai, A., Ben Slimene, I., Moussa, A., Zouari, K., Yadav, K., Eid, M., Abukhadra, M., El-Sherbeeny, A., Gad, M., Farouk, M., Elsherbiny, O., Elsayed, S., Bellucci, S., & Ibrahim, H. (2023). Applying Multivariate Analysis and Machine Learning Approaches to Evaluating Groundwater Quality on the Kairouan Plain, Tunisia. Water, 15(19), 3495. https://doi.org/10.3390/w15193495 DOI: https://doi.org/10.3390/w15193495
Salman Dawood, A., Sagban Khudier, A., & Naeemah Bashara, A. (2018). Physicochemical Quality Assessment and Multivariate Statistical Analysis of Groundwater Quality in Basrah, Iraq. International Journal of Engineering & Technology, 7(4.20), 245. https://doi.org/10.14419/ijet.v7i4.20.25934 DOI: https://doi.org/10.14419/ijet.v7i4.20.25934
Schoenherr, J., Reuning, L., Hallenberger, M., Lüders, V., Lemmens, L., Biehl, B. C., Lewin, A., Leupold, M., Wimmers, K., & Strohmenger, C. J. (2018). Dedolomitization: Review and case study of uncommon mesogenetic formation conditions. Earth-Science Reviews, 185, 780–805. https://doi.org/10.1016/j.earscirev.2018.07.005 DOI: https://doi.org/10.1016/j.earscirev.2018.07.005
Singh, K. R., Goswami, A. P., Kalamdhad, A. S., & Kumar, B. (2020). Development of irrigation water quality index incorporating information entropy. Environment, Development and Sustainability, 22(4), 3119–3132. https://doi.org/10.1007/s10668-019-00338-z DOI: https://doi.org/10.1007/s10668-019-00338-z
Smida, H., Abdellaoui, C., Zairi, M., & Ben Dhia, H. (2010). Cartographie des zones vulnérables à la pollution agricole par la méthode DRASTIC couplée à un Système d’information géographique (SIG): Cas de la nappe phréatique de Chaffar (sud de Sfax, Tunisie). “Mapping of areas vulnerable to agricultural pollution using the DRASTIC method coupled with a Geographic Information System (GIS): The case of the Chaffar water table (south of Sfax, Tunisia)”. Sécheresse, 21(2), 131–146. https://doi.org/10.1684/sec.2010.0246 DOI: https://doi.org/10.1684/sec.2010.0246
Su, Q., Yu, H., Xu, X., Chen, B., Yang, L., Fu, T., Liu, W., & Chen, G. (2023). Using Principal Component Analysis (PCA) Combined with Multivariate Change-Point Analysis to Identify Brine Layers Based on the Geochemistry of the Core Sediment. Water, 15(10), 1926. https://doi.org/10.3390/w15101926 DOI: https://doi.org/10.3390/w15101926
Sun, W., Powell-Palm, M. J., & Chen, J. (2021). The geometry of high-dimensional phase diagrams: I. Generalized Gibbs Phase Rule (Version 3) [Mathematical Physics]. arXiv. https://doi.org/10.48550/ARXIV.2105.01337
Sunkari, E. D., Abu, M., Zango, M. S., & Lomoro Wani, A. M. (2020). Hydrogeochemical characterization and assessment of groundwater quality in the Kwahu-Bombouaka Group of the Voltaian Supergroup, Ghana. Journal of African Earth Sciences, 169, 103899. https://doi.org/10.1016/j.jafrearsci.2020.103899 DOI: https://doi.org/10.1016/j.jafrearsci.2020.103899
Surkar, P. P., & Choudhary, M. K. (2023). Climate Change Impact Assessment on Water Resources–A Review. In P. V. Timbadiya, V. P. Singh, & P. J. Sharma (Eds.), Climate Change Impact on Water Resources (Vol. 313, pp. 113–125). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-8524-9_10 DOI: https://doi.org/10.1007/978-981-19-8524-9_10
Thapa, R., Gupta, S., & Kaur, H. (2020). Introducing an irrigation water quality index (IWQI) based on the case study of the Dwarka River basin, Birbhum, West Bengal, India. Sustainable Water Resources Management, 6(5), 86. https://doi.org/10.1007/s40899-020-00450-3 DOI: https://doi.org/10.1007/s40899-020-00450-3
User Manual HQd Portable Meter. (2020, Edition). Hach. HACH; DOC022.53.80017. https://www.hach.com
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., Van Der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., … Vázquez-Baeza, Y. (2020). SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nature Methods, 17(3), 261–272. https://doi.org/10.1038/s41592-019-0686-2 DOI: https://doi.org/10.1038/s41592-020-0772-5
Ward, J. H. (1963). Hierarchical Grouping to Optimize an Objective Function. Journal of the American Statistical Association, 58(301), 236–244. https://doi.org/10.1080/01621459.1963.10500845 DOI: https://doi.org/10.1080/01621459.1963.10500845
Wu, J., & Sun, Z. (2016). Evaluation of Shallow Groundwater Contamination and Associated Human Health Risk in an Alluvial Plain Impacted by Agricultural and Industrial Activities, Mid-west China. Exposure and Health, 8(3), 311–329. https://doi.org/10.1007/s12403-015-0170-x DOI: https://doi.org/10.1007/s12403-015-0170-x
Yıldız, S., & Karakuş, C. B. (2020). Estimation of irrigation water quality index with development of an optimum model: A case study. Environment, Development and Sustainability, 22(5), 4771–4786. https://doi.org/10.1007/s10668-019-00405-5 DOI: https://doi.org/10.1007/s10668-019-00405-5
Zare Farjoudi, S., & Alizadeh, Z. (2021). A comparative study of total dissolved solids in water estimation models using Gaussian process regression with different kernel functions. Environmental Earth Sciences, 80(17), 557. https://doi.org/10.1007/s12665-021-09798-x DOI: https://doi.org/10.1007/s12665-021-09798-x
Zhang, Z., Yao, W., Huang, Y., Jiang, X., Gao, Z., Chen, S., & Tan, S. (2024). Irrigation Water Salinity Affects Solute Transport and Its Potential Factors Influencing Salt Distribution in Unsaturated Homogenous Red Soil. Agronomy, 14(11), 2453. https://doi.org/10.3390/agronomy14112453 DOI: https://doi.org/10.3390/agronomy14112453
Zhu, X., Miao, P., Qin, J., Li, W., Wang, L., Chen, Z., & Zhou, J. (2023). Spatio-temporal variations of nitrate pollution of groundwater in the intensive agricultural region: Hotspots and driving forces. Journal of Hydrology, 623, 129864. https://doi.org/10.1016/j.jhydrol.2023.129864 DOI: https://doi.org/10.1016/j.jhydrol.2023.129864
Zoller, U., Weintraub, O., & Havatselet, N. (1980). A chemical profile of recycled irrigation water in North-East Israel. Science of The Total Environment, 15(1), 51–64. https://doi.org/10.1016/0048-9697(80)90084-4 DOI: https://doi.org/10.1016/0048-9697(80)90084-4

How to Cite

Ben Slimene, I., Ben Moussa, A., Geyer, S., & Trabelsi, I. (2025). Geospatial mapping and multivariate statistical analysis for assessing groundwater quality in Bou Arada-El Aroussa plain, Northwestern Tunisia. Acque Sotterranee - Italian Journal of Groundwater, 14(1). https://doi.org/10.7343/as-2025-816

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.