Groundwater in the cities of Europe: hidden challenges in a changing climate

Published: 30 September 2024
Abstract Views: 308
PDF: 156
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

In European cities, groundwater remains an issue of significant concern, largely because it is “out of sight and out of mind.” The general public, and even decision-makers, possess only a limited understanding of the state and characteristics of this vital resource. As a consequence, problems related to groundwater quality or changing water tables/piezometric surfaces may persist for years, or even decades, without being adequately addressed-or worse, without being noticed at all before resulting in land subsidence,saltwater intrusion, deep migration of persistent organic contaminants like PFAS (Le monde, 2023) or other irreversible consequences. The urban water cycle is central to ensuring the supply of clean, safe drinking water, effective sanitation, and wellfunctioning drainage systems for millions of residents. The impacts of human activities, such as land use change, excessive water abstraction and mismanagement, and the discharge of wastewater can exert a far greater influence on groundwater systems and hydrogeology than climate change. These activities alter the quantity and quality of both surface and groundwater, raising complex scientific, technical, socio-economic, cultural, and ethical challenges in urban water management. It is important to address the many challenges associated with ensuring water security and safety in cities (Quevauviller et al., 2024), as well as for development of effective climate change mitigation and adaptation strategies for urban areas (IPCC, 2024). Groundwater plays a critical role in the green transition and is an integral component of most climate change mitigation and adaptation strategies (Ingemarsson et al., 2022), and for meeting the increasing demand for freshwater in cities due to accelerating urbanization (United Nations, 2022). Many urbanized areas in Europe already face poor chemical and quantitative status (EEA, 2024; Sentek et al., 2024), and global change including increasing populations and sea level rise pose a tremendous challenge for safe and secure water supply especially in coastal European cities. Open access to digital subsurface data e.g. through the European Geological Data Infrastructure supports societal needs and UN sustainable development goals (Hinsby et al., 2024). This special issue demonstrates some of the important issues that the water supply of European cities are facing in times of increasing competing use of the subsurface (Volckko et al., 2020), projected climate change impacts on the hydrological cycle (Henriksen et al., 2023) and with freshwater now being among the transgressed planetary boundaries (Richardsson et al., 2023). [...]

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Bricker, S., Jelenek, J., van der Keur, P.; La Vigna, F.; O’Connor, S., Ryzynski, G.; Smith, M.; Schokker, J., Venvik, G. (2024) Geoscience for Cities: Delivering Europe’s Sustainable Urban Future. Sustainability 2024, 16, 2559.https://doi.org/10.3390/su16062559 DOI: https://doi.org/10.3390/su16062559
Cherevko, I., Kril, T., Bugai, D., & Shekhunova, S., (this volume). Impact of hydrogeological factors on geotechnical conditions of the Kyiv-Pechersk Lavra Monastery complex: lessons from three decades of monitoring. Acque Sotterranee - Italian Journal of Groundwater, 13(3), https://doi.org/10.7343/as-2024-765
EEA (2024). WISE Freshwater – Freshwater Information System for Europe: Groundwater chemical status. https://water.europa.eu/freshwater/europe-freshwater/water-framework-directive/groundwater-chemical-status – accessed 23-09-2024.
Esposito, E., Ginolfi, M., Leone, G., & Fiorillo, F., (this volume). Hydrogeological and historical aspects of the water supply of Benevento town since the Roman age. Acque Sotterranee - Italian Journal of Groundwater, 13(3), https://doi.org/10.7343/as-2024-774
Farina, D., & De Angelis, S. (this volume). Groundwater in the city of Pesaro (Marche, Italy): anthropic impact and interference with the urban environment Acque Sotterranee - Italian Journal of Groundwater, 13(3), https://doi.org/10.7343/as-2024-776
Henriksen, H. J., Schneider, R., Koch, J., Ondracek, M., Troldborg, L., Seidenfaden, I. K., Kragh, S. J., Bøgh, E., & Stisen, S. (2023). A New Digital Twin for Climate Change Adaptation, Water Management, and Disaster Risk Reduction (HIP Digital Twin). Water (Switzerland), 15(1). https://doi.org/10.3390/w15010025. DOI: https://doi.org/10.3390/w15010025
Hinsby, K., Négrel, P., de Oliveira, D., Barros, R., Venvik, G, Ladenberger, A., Griffioen, J., Piessens, K., Calcagno, P., Götzl, G., Broers. H.P., Gourcy, L., van Heteren, S., Hollis, J., Poyiadjik, E., Cápová, D., & Tulstrup, J. (2024). Mapping and Understanding Earth: Open access to digital geoscience data and knowledge supports societal needs and UN Sustainable Development Goals. Int J Appl Earth Obs Geoinf, 130, 103835 DOI: https://doi.org/10.1016/j.jag.2024.103835
Ingemarsson, M.L., Weinberg, J., Rudebeck, T., Erlandsson, L.W., (2022). The Essential Drop to Reach Net-Zero: Unpacking Freshwater’s Role in Climate Change Mitigation. Stockholm International Water Institute, Stockholm, Sweden.
IPCC (2024). Special report on Climate Change and Cities. https://www.ipcc.ch/report/special-report-on-climate-change-and-cities/ - accessed 23-09-2024
Jørgensen, L.F., Troldborg, L., Ondracek, M., Seidenfaden, I.K., Kidmose, J., Vangsgaard, C., & Hinsby, K. (this volume). Groundwater resilience, security, and safety in the four largest cities in Denmark - Acque Sotterranee - Italian Journal of Groundwater, 13(3), https://doi.org/10.7343/as-2024-803
La Vigna, F., Alberti, L., Da Pelo, S., Ducci, D., Fabbri, P., Gargini, A., Lasagna, M., Pappalardo, G., Polemio, M., & Rusi, S. (this volume). Exploring the aquifers shaping Italy’s sub-urban landscape. Acque Sotterranee - Italian Journal of Groundwater, 13(3), https://doi.org/10.7343/as-2024-806 DOI: https://doi.org/10.7343/as-2024-806
Lucassou, F., Chrétien, P., Pinson, S., Barrière, J., & Le Guern, C. (this volume). Mapping the intrinsic potential of water infiltration in urban subsurface: feedback from France. Acque Sotterranee - Italian Journal of Groundwater, 13(3), https://doi.org/10.7343/as-2024-776
Quevauviller, P., Hinsby, K., Seidenfaden, I.K., Pulido-Velázquez, D., Sapiano, M., Coelho, R., Gartinessi, P., HohenBlum, P., Jirovsky, V., Marinheiro, F., Simas, L., Teixeira, R., Ugarelli, R., Cardarilli, M., Paraskevopoulos, S., Vrachimis, S., Gertjan, M., Eliades, D. & La Vigna, F. (this volume). Urban water security and safety. Acque
Sotterranee - Italian Journal of Groundwater, 13(3)
Richardson, K., Steffen, W., Lucht, W., Bendtsen, J., Cornell, S.E., Donges, J.F., Drüke, M., Fetzer, I., Bala, G., von Bloh, W., Feulner, G., Fiedler, S., Gerten, D., Gleeson, T., Hofmann, M., Huiskamp, W., Kummu, M., Mohan, C., Nogu´'es-Bravo, D., Rockström, J., 2023. Earth beyond six of nine planetary boundaries. Sci. Adv. 9, DOI: https://doi.org/10.1126/sciadv.adh2458
eadh2458
Roma, M., Bonfà, I., Congi, M.P., Gafà, R.M., Martarelli, l., Monti, G.M., Papiccio, C., Silvi, A., Vitale, V., & La Vigna, F. (this volume). Guardians of the Aquifers: Enhancing Rome’s Groundwater Monitoring Network. Acque Sotterranee - Italian Journal of Groundwater, 13(3), https://doi.org/10.7343/as-2024-812 DOI: https://doi.org/10.7343/as-2024-812
Sartirana, D., Zanotti, C., Rotiroti, M., Caschetto, M., Redaelli A., Bruno S., Fumagalli L., De Amicis M., & Bonomi T. (this volume). Urban Water Management in Milan Metropolitan Area. Acque
Sotterranee - Italian Journal of Groundwater, 13(3), https://doi.org/10.7343/as-2024-763
Sentek, Z., Prtorić, J., Pilz, S., Renson, I., Eckert, M., Tudela, A., Delgado, A., Aubert, R., Boutsi,M. & Sanchez, L. (2024). Under the surface – the hidden crisis in Europe’s groundwater. https://
europeanwaters.eu/ - accessed 23-09-2024.
Shestopalov, V., Rudenko, Yu., Koliabina, I., Stetsenko B., & Yaroshenko K. (this volume) Groundwater for urban water supply in Ukraine: a case study of Mykolaiv (Military challenges and lessons for the future) - Acque Sotterranee – Italian Journal of Groundwater, 13(3), https://doi.org/10.7343/as-2024-772
United Nations, 2022. The United Nations World Water Development Report 2022: Groundwater: Making the invisible visible. UNESCO, Paris. https://unesdoc.unesco. org/ark:/48223/
pf0000380721.
Volchko, Y., Norrman, J., Ericsson, L.O., Nilsson, K.L., Markstedt, A., Öberg, M., Mossmark, F., Bobylev, N., Tengborg, P., 2020. Subsurface planning: Towards a common understanding of the
subsurface as a multifunctional resource. Land Use Policy 90, 104316. https://doi.org/10.1016/j.landusepol.2019.104316. DOI: https://doi.org/10.1016/j.landusepol.2019.104316

How to Cite

Hinsby, K., O’Connor, S., Larva, O., van der Keur, P., & La Vigna, F. (2024). Groundwater in the cities of Europe: hidden challenges in a changing climate. Acque Sotterranee - Italian Journal of Groundwater, 13(3). https://doi.org/10.7343/as-2024-822

Similar Articles

<< < 16 17 18 19 20 21 22 23 24 25 > >> 

You may also start an advanced similarity search for this article.