Assessment of groundwater quality and soil salinization risks in the central Tunisia aquifer systems: water resources management and public health implications

Submitted: 30 September 2024
Accepted: 6 March 2025
Published: 31 March 2025
Abstract Views: 204
PDF: 24
SUPPLEMENTARY MATERIAL: 17
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

In deserts and semi-arid areas, groundwater is limited and often of varying quality, affecting human health and soil fertility. In Central Tunisia’s Maknassy region, intensive agriculture has increased the extraction of water from the Upper Zebbag deep aquifer (UZ), causing a decline in groundwater levels and posing a threat to this resource. This study aims to calculate indexes for assessing the suitability of groundwater for domestic and agricultural use, considering factors such as soil salinization and irrigation practices. The analysis of these indexes provides insights into the current state of groundwater quality, which could eventually serve as a foundation for managing and safeguarding the research area’s soil and water resources. To achieve this, a multidisciplinary approach was used, incorporating indexes such as the Drinking Water Quality Index (DWQI), Irrigation Water Quality Index (IWQI), Nitrate Pollution Index (NPI), and Human Health Risk Assessment (HHRA), along with multivariate statistical simulations. The water quality index (WQI) shows that 53% of the area has good water for human consumption, while 47% is of poor quality. For irrigation, 92% of the study area shows good quality. The study also uses the Ascending Hierarchical Classification (AHC) to identify three water groups, highlighting risks related to soil salinisation and sodisation. The NPI reveals medium levels of nitrate contamination in 26.67% of samples, and children are found to be more at risk of non-carcinogenic health issues compared to adults. These various findings could serve as a foundation for managing and safeguarding the research area’s soil and water resources.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Adimalla, N. (2019). Spatial distribution, exposure, and potential health risk assessment from nitrate in drinking water from semiarid region of South India. Human and Ecological Risk Assessment: An International Journal. https://doi.org/10.1080/10807039.2018.1508329. DOI: https://doi.org/10.1080/10807039.2018.1508329
Adimalla, N., & Qian, H. (2019). Groundwater quality evaluation using water quality index (WQI) for drinking purposes and human health risk (HHR) assessment in an agricultural region of Nanganur, south India. Ecotoxicology and Environmental Safety, 176, 153–161. DOI: https://doi.org/10.1016/j.ecoenv.2019.03.066
Adimalla, N., Qian, H., & Li, P. (2019). Entropy water quality index and probabilistic health risk assessment from geochemistry of groundwaters in hard rock terrain of Nanganur County, South India. Geochemistry. https://doi.org/10.1016/j.chemer.2019.125544. DOI: https://doi.org/10.1016/j.chemer.2019.125544
Adimalla, N., & Venkatayogi, S. (2018). Geochemical characterization and evaluation of groundwater suitability for domestic and agricultural utility in semi-arid region of Basara, Telangana State, South India. Applied Water Science. https://doi.org/10.1007/s13201-018-0682-1. DOI: https://doi.org/10.1007/s13201-018-0682-1
Adimalla, N., & Wu, J. (2019). Groundwater quality and associated health risks in a semi-arid region of south India: Implication to sustainable groundwater management. Human and Ecological Risk Assessment: An International Journal. https://doi.org/10.1080/10807039.2018.154655. DOI: https://doi.org/10.1080/10807039.2018.1546550
Agbasi, J. C., Egbueri, J. C., Ayejoto, D. A., Unigwe, C. O., Omeka, M. E., Nwazelibe, V. E., Ighalo, J.O., Januraga, P.P., Fakoya, A. A. (2023). The impact of seasonal changes on the trends of physicochemical, heavy metal and microbial loads in water resources of Southeastern Nigeria: a critical review. Climate change impacts on Nigeria: environment and sustainable development, 505-539. DOI: 10.1007/978-3-031-21007-5_25 DOI: https://doi.org/10.1007/978-3-031-21007-5_25
Agoubi, B., Kharroubi, A., Bouri, S., & Abida, H. (2010). Contribution of geostatistical modelling to mapping groundwater level and aquifer geometry: Case study of Sfax’s deep aquifer, Tunisia. Middle East Journal of Scientific Research, 6(3), 305–316.
Amanullah, Khalid, S., Imran, Khan, H. A., Arif, M., Altawaha, A. R., & Parmar, B. (2020). Effects of climate change on irrigation water quality. Environment, climate, plant and vegetation growth, 123-132. DOI: https://doi.org/10.1007/978-3-030-49732-3_6
Ahada, C. P. S., & Suthar, S. (2018). Groundwater nitrate contamination and associated human health risk assessment in southern districts of Punjab, India. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-018-2581-2. DOI: https://doi.org/10.1007/s11356-018-2581-2
Ahmadi, S.H. and Sedghamiz, A. (2008) Application and Evaluation of Kriging and Cokriging Methods on Groundwater Depth Mapping. Environmental Monitoring and Assessment, 138, 357-368. https://doi.org/10.1007/s10661-007-9803-2 DOI: https://doi.org/10.1007/s10661-007-9803-2
Akber, M. A., Islam, M. A., Dutta, M., Billah, S. M., & Islam, M. A. (2020). Nitrate contamination of water in dug wells and associated health risks of rural communities in southwest Bangladesh. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-020-8128-2. DOI: https://doi.org/10.1007/s10661-020-8128-2
Ayed, B., Jmal, I., Sahal, S., Mokadem, N., Saidi, S., Boughariou, E., & Bouri, S. (2017). Hydrochemical characterization of groundwater using multivariate statistical analysis: the Maritime Djeffara shallow aquifer (Southeastern Tunisia). Environmental Earth Sciences. https://doi.org/10.1007/s12665-017-7168-6. DOI: https://doi.org/10.1007/s12665-017-7168-6
Ayers, R. S. (1977). Quality of water for irrigation. Journal of Irrigation and Drainage Div. ASCE, 103(IR2), 135–154. DOI: https://doi.org/10.1061/JRCEA4.0001138
Ayers, R. S., & Westcot, D. W. (1985). Water quality for agriculture (Vol. 29). Rome: Food and Agriculture Organization of the United Nations. http://www.fao.org/3/T0234E/T0234E00.htm#TOC.
Ben Brahim, F., Khanfir, H., & Bouri, S. (2012). Groundwater vulnerability and risk mapping of the Northern Sfax Aquifer, Tunisia. Arabian Journal for Science and Engineering, 37(5), 1405-1421. DOI 10.1007/s13369-012-0261-y. DOI: https://doi.org/10.1007/s13369-012-0261-y
Ben Brahim F., Boughariou E., Bouri S. (2021) Multicriteria-analysis of deep groundwater quality using WQI and fuzzy logic tool in GIS: A case study of Kebilli region, SW Tunisia. Journal of African Earth Sciences, 180, 104224. https://doi.org/10.1016/j.jafrearsci.2021.104224 DOI: https://doi.org/10.1016/j.jafrearsci.2021.104224
Ben Brahim F., Msaddki H., Bouri S. (2022a) Groundwater quality index mapping for irrigation purposes in the “El Hezma-El Hmila” (Medenine, Tunisia). CLEAN-Soil, Air, Water Journal. https://doi.wiley.com/10.1002/clen.202100203 DOI: https://doi.org/10.1002/clen.202100203
Ben Brahim F., Boughariou E, Hajji S., Bouri S. (2022b). Assessment of groundwater quality with Analytic Hierarchy Process, Boolean Logic and Clustering Analysis using GIS platform in the Kebilli’s Complex Terminal groundwater, SW Tunisia Environmental Earth Sciences Journal. https://doi.org/10.1007/s12665-022-10541-3 DOI: https://doi.org/10.1007/s12665-022-10541-3
Ben Brahim, F., Rhayma Z., Bouri, S. (2023). Application of Geospatial Multicriteria-Decision Analysis in the Evaluation of Groundwater Quality for Irrigation in the Northern sector of Gabes region (SETunisia) Chapter in Groundwater Book of Arid and Semi-Arid Regions pp 131-157: Contaminants, Management and Options of Safe Water Supply. https://link.springer.com/book/9783031433474 DOI: https://doi.org/10.1007/978-3-031-43348-1_6
Boughariou, E., Allouche, N., Jmal, I., Mokadem, N., Ayed, B., Hajji, S., Khanfir, H. & Bouri, S. (2018). Modeling aquifer behaviour under climate change and high consumption: Case study of the Sfax region, southeast Tunisia. Journal of African Earth Sciences, 141, 118-129. DOI: https://doi.org/10.1016/j.jafrearsci.2018.02.006
Chen, J., Wu, H., Qian, H., & Gao, Y. (2017). Assessing nitrate and fluoride contaminants in drinking water and their health risk of rural residents living in a semiarid region of Northwest China. Expo Health, 9, 183–195. https://doi.org/10.1007/s12403-016-0231-9. DOI: https://doi.org/10.1007/s12403-016-0231-9
Doneen, L. D. (1964). Notes on water quality in agriculture (p. 48). University of California, Davis.
Egbueri, J. C., Ezugwu, C. K., Ameh, P. D., Unigwe, C. O., & Ayejoto, D. A. (2020). Appraising drinking water quality in Ikem rural area (Nigeria) based on chemometrics and multiple indexical methods. Environmental Monitoring and Assessment, 192, 308. https://doi.org/10.1007/s10661-020-08277-3. DOI: https://doi.org/10.1007/s10661-020-08277-3
Egbueri, J. C., Mgbenu, C. N., & Chukwu, C. N. (2019). Investigating the hydrogeochemical processes and quality of water resources in Ojoto and environs using integrated classical methods. Modeling Earth Systems and Environment. https://doi.org/10.1007/s40808-019-00613-y. DOI: https://doi.org/10.1007/s40808-019-00613-y
Exner, M. E., A. J. Hirsh, and R. F. Spalding (2014). Nebraska’s groundwater legacy: Nitrate contamination beneath irrigated cropland, WaterResour.Res., 50,4474–4489, doi: 10.1002/2013WR015073. DOI: https://doi.org/10.1002/2013WR015073
Fekkoul, A., Zarhloule, Y., Boughriba, M., Barkaoui, A. E., Jilali, A., & Bouri, S. (2013). Impact of anthropogenic activities on the groundwater resources of the unconfined aquifer of Triffa plain (Eastern Morocco). Arabian Journal of Geosciences, 6, 4917-4924. DOI: https://doi.org/10.1007/s12517-012-0740-1
Gaaloul, N., Pliakas, F., Kallioras, A., Schuth, C., & Marinos, P. (2012). Simulation of seawater intrusion in coastal aquifers: Forty five-years exploitation in an eastern coast aquifer in NE Tunisia. The Open Hydrology Journal, 6(1). DOI: 10.2174/1874378101206010031 DOI: https://doi.org/10.2174/1874378101206010031
Gangolli, S. D., Van den Brandt, P. A., Feron, V. J., Janzowsky, C., Koeman, J. H., Speijers, G. J., Spiegelhalder, B., Walker, R., & Wishnok, J. S. (1994). Nitrate, nitrite and N-nitroso compounds. European Journal of Pharmacology: Environmental Toxicology and Pharmacology, 292(1), 1–38. https://doi.org/10.1016/0926-6917(94)90022-1. DOI: https://doi.org/10.1016/0926-6917(94)90022-1
Mzid, Nada, and Olfa Boussadia (2024). Challenges for Sustainable Water Resource Management: Irrigation and Salinity. The Olive Landscapes of the Mediterranean. Springer, Cham, 2024. 405-412. DOI: https://doi.org/10.1007/978-3-031-57956-1_39
Gupta, S. K., Gupta, R. C., Gupta, A. B., Seth, A. K., Bassin, J. K., & Gupta, A. (2000). Recurrent acute respiratory tract infections in areas with high nitrate concentrations in drinking water. Environmental Health Perspectives, 108(4), 363–366. https://doi.org/10.1289/ehp.00108363. DOI: https://doi.org/10.1289/ehp.00108363
Horton, R. (1965). An index number system for rating water quality. J Water Pollut Control Fed 37:300–306
ICMR (Indian Council of Medical Research) Expert Group. (1990). Nutrient Requirements and Recommended Dietary Allowances for Indians: A Report of the Expert Group of the Indian Council of Medical Research.
IRIS (Integrated Risk Information System, US EPA). (2012). Nitrate (CASRN 14797–55–8). http://www.epa.gov/iris/subst/0076.htm.
Karakus¸, C. B., & Yıldız, S. (2019). Evaluation for irrigation water purposes of groundwater quality in the vicinity of Sivas City centre (Turkey) by using Gis and an irrigation water quality index. Irrigation and Drainage. https://doi.org/10.1002/ird.2386. DOI: https://doi.org/10.1002/ird.2386
Kelly, W. P. (1951). Alkali Soils: Their Formation, Properties and Reclamation. New York, Reinhold, 176. Science, 114(2969), 558. https://doi.org/10.1126/science.114.2969.558. DOI: https://doi.org/10.1126/science.114.2969.558
Kim, H., Yu, S., Oh, J., Kim, K., Lee, J., Moniruzzaman, M., Kim, H. K., & Yun, S. (2019). Nitrate contamination and subsequent hydrogeochemical processes of shallow groundwater in agro-livestock farming districts in South Korea. Agriculture, Ecosystems & Environment, 273, 50–61. https://doi.org/10.1016/j.agee.2018.12.010 DOI: https://doi.org/10.1016/j.agee.2018.12.010
Kumar, D., Singh, A., Jha, R. K., Sahoo, B. B., Sahoo, S. K., & Jha, V. (2019). Source characterization and human health risk assessment of nitrate in groundwater of middle Gangetic Plain India. Arabian Journal of Geosciences, 12(11), 339. https://doi.org/10.1007/s12517-019-4519-5. DOI: https://doi.org/10.1007/s12517-019-4519-5
Li, P., Li, X., Meng, X., Li, M., & Zhang, Y. (2016). Appraising groundwater quality and health risks from contamination in a semiarid region of Northwest China. Exposure and Health, 8(3), 361–379. https://doi.org/10.1007/s12403-016-0205-y. DOI: https://doi.org/10.1007/s12403-016-0205-y
Makni, J., Bouri, S., & Ben Dhia, H. (2013). Hydrochemistry and geothermometry of thermal groundwater of southeastern Tunisia (Gabes region). Arabian Journal of Geosciences, 6, 2673-2683. https://doi.org/10.1007/s12517-011-0510-5 DOI: https://doi.org/10.1007/s12517-011-0510-5
Mhamdi, A., Gouasmia, M., Gasmi, M., Bouri, S., & Dhia, H. B. (2006). Évaluation de la qualité de l’eau par application de la méthode géoélectrique: exemple de la plaine d’El Mida–Gabes nord (Sud tunisien). Comptes rendus. Géoscience, 338(16), 1228-1239. https://doi.org/10.1016/j.crte.2006.09.005. DOI: https://doi.org/10.1016/j.crte.2006.09.005
Meireles, A. C. M., Andrade, E. M., Chaves, L. C. G., Frischkorn, H., & Crisostomo, L. A. (2010). A new proposal of the classification of irrigation water. Revista Ciencia Agronomica, 41(3), 349–357. https://doi.org/10.1590/S180666902010000300005. DOI: https://doi.org/10.1590/S1806-66902010000300005
Miller, J. D., & Hutchins, M. (2017). The impacts of urbanization and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom. Journal of Hydrology: Regional Studies, 12, 345-362. https://doi.org/10.1016/j.ejrh.2017.06.006 DOI: https://doi.org/10.1016/j.ejrh.2017.06.006
Moussaoui, Z., Gentilucci, M., Wederni, K.; Hidouri, N., Hamdi, M., Dhaoui, Z., Hamed, Y. (2023). Hydrogeochemical and Stable Isotope Data of the Groundwater of a Multi-Aquifer System in the Maknessy Basin (Mediterranean Area, Central Tunisia). Hydrology 2023, 10, 32. DOI: https://doi.org/10.3390/hydrology10020032
Mheni, N. T., Kilasi, N., Quiloy, F. A., Heredia, M. C., Bilaro, A., Meliyo, J., Dixit, S., Nchimbi Msolla, S. (2024). Breeding rice for salinity tolerance and salt-affected soils in Africa: a review. Cogent Food & Agriculture. https://doi.org/10.1080/23311932.2024.2327666 DOI: https://doi.org/10.1080/23311932.2024.2327666
Narsimha, A., & Sudarshan, V. (2016). Contamination of fluoride in groundwater and its effect on human health: A case study in hard rock aquifers of Siddipet, Telangana State India. Applied Water Science, 7(5), 2501–2512. https://doi.org/10.1007/s13201-016-0441-0. DOI: https://doi.org/10.1007/s13201-016-0441-0
NT: Norme tunisienne NT 09–14, relative a` la qualite des eaux de boisson (2013).
Nsiri, M., Ben Brahim, F., Khlifi, M., Bouri S. (2021). Assessment of the effects of anthropogenic activities on the El Arich groundwater using hydrogeochemistry, GIS and multivariate statistical techniques: a case study of the semi-arid Kasserine region, Tunisia. Environmental Quality Management Journal. http://dx.doi.org/10.1002/tqem.21810 DOI: https://doi.org/10.1002/tqem.21810
Ouda B., (2000). Paléohydrologie isotopique du bassin de Maknassy (Tunisie centrale) pendant le Quaternaire récent. Thèse de Doctorat, Faculté des Sciences de Tunis, 234p.
Panneerselvam, B., Karuppannan, S., & Muniraj, K. (2020). Evaluation of drinking and irrigation suitability of groundwater with special emphasizing the health risk posed by nitrate contamination using nitrate pollution index (NPI) and human health risk assessment (HHRA). Human and Ecological Risk Assessment: An International Journal. https://doi.org/10.1080/10807039.2020.1833300. DOI: https://doi.org/10.1080/10807039.2020.1833300
Qadir, M., Sposito, G., Smith, C. J., & Oster, J. D. (2021). Reassessing irrigation water quality guidelines for sodicity hazard. Agricultural Water Management, 255, 107054. https://doi.org/10.1016/j.agwat.2021.107054 DOI: https://doi.org/10.1016/j.agwat.2021.107054
Richards, L. A. (1954). (US Salinity Laboratory) Diagnosis and improvement of saline and alkaline soils, US Department of Agriculture hand book.
Sadler, R., Maetam, B., Edokpolo, B., Connell, D., Yu, J., Stewart, D., Park, M. J., Gray, D., & Laksono, B. (2016). Health risk assessment for exposure to nitrate in drinking water from village wells in Semarang Indonesia. Environmental Pollution, 216(738), 745. https://doi.org/10.1016/j.envpol.2016.06.041. DOI: https://doi.org/10.1016/j.envpol.2016.06.041
Sahu, P., & Sikdar, P. K. (2007). Hydrochemical framework of the aquifer in and around East Kolkata Wetlands, West Bengal India. Environmental Geology, 55(4), 823–835. https://doi.org/10.1007/s00254-007-1034-x. DOI: https://doi.org/10.1007/s00254-007-1034-x
Simsek, C., & Gunduz, O. (2007). IWQ index: A GIS-integrated technique to assess irrigation water quality. Environmental Monitoring and Assessment, 128(1–3), 277–300. https://doi.org/10.1007/s10661-006-9312-8. DOI: https://doi.org/10.1007/s10661-006-9312-8
Spalding, R. F., & Exner, M. E. (1993). Occurrence of nitrate in groundwater. Environment Quality., 22(3), 392. https://doi.org/10.2134/jeq1993.00472425002200030002x. DOI: https://doi.org/10.2134/jeq1993.00472425002200030002x
Stavi, I., Thevs, N., & Priori, S. (2021). Soil salinity and sodicity in drylands: A review of causes, effects, monitoring, and restoration measures. Frontiers in Environmental Science, 9, 712831. DOI: https://doi.org/10.3389/fenvs.2021.712831
Szabolcs, I., Darab, C. (1964). The influence of irrigation water of high sodium carbonate content of soils. In Proceedings of 8th international congress of ISSS, Trans, 803–812.
US Environmental Protection Agency (USEPA). (2001). Baseline Human Health Risk Assessment Vasquez Boulevard and I-70 Superfund Site. Denver CO.
USEPA (United States Environmental Protection Agency). (1989). Superfund Public Health Evaluation Manual. Washington, DC.
USEPA (US Environmental Protection Agency). (1991). Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part B, Development of RiskBased Preliminary Remediation Goals). http://epaprgs.ornl.gov/radionuclides/HHEMB.
Vasanthavigar, M., Srinivasamoorthy, K., Vijayaragavan, K., Rajiv Ganthi, R., Chidambaram, S., Anandhan, P., Manivannan, R., & Vasudevan, S. (2010). Application of water quality index for groundwater quality assessment: Thirumanimuttar sub-basin, Tamilnadu India. Environmental Monitoring and Assessment, 171, 595–609. https://doi.org/10.1007/s10661-009-1302-1. DOI: https://doi.org/10.1007/s10661-009-1302-1
Vetrimurugan, E., Brindha, K., Elango, L., & Ndwandwe, O. M. (2017). Human exposure risk to heavy metals through groundwater used for drinking in an intensively irrigated river delta. Applied Water Science, 7(6), 3267–3280. DOI: https://doi.org/10.1007/s13201-016-0472-6
Wagh, V. M., Panaskar, D. B., Mukate, S. V., Aamalawar, M. L., & Laxman Sahu, U. (2019). Nitrate associated health risks from groundwater of Kadava River Basin Nashik, Maharashtra, India. DOI: https://doi.org/10.1080/10807039.2018.1528861
Human and Ecological Risk Assessment: An International Journal. https://doi.org/10.1080/10807039.2018.1528861.
WHO. (2017). Guidelines for drinking-water quality. In Incorporating the first addendum (4th., pp. 38). WHO chronicle.
Wilcox, L. V. (1955). Classification and use of irrigation waters. USDA Circular No. 969. Washington, DC, 19.
World Bank (2022). Tunisia Country Climate and Development Report. Available at: https://www.banquemondiale.org/fr/country/tunisia/publication/tunisia-country-climate-and-developmentreport.
Wu, J., & Sun, Z. (2016). Evaluation of shallow groundwater contamination and associated human health risk in an alluvial plain impacted by agricultural and industrial activities, mid-west China. Expo Health, 8(3), 311–329. https://doi.org/10.1007/s12403-015-0170-x. DOI: https://doi.org/10.1007/s12403-015-0170-x
Wu, J., Zhang, Y., & Zhou, H. (2020). Groundwater chemistry and groundwater quality index incorporating health risk weighting in Dingbian County, Ordos basin of northwest China. Geochemistry. https://doi.org/10.1016/j.chemer.2020.125607. DOI: https://doi.org/10.1016/j.chemer.2020.125607
Yidana, S.M., Yakubo, B.B. and Akabzaa, T.M. (2010). Analysis of Groundwater Quality Using Multivariate and Spatial Analyses in the Keta Basin, Ghana. Journal of African Earth Sciences, 58, 220-234. https://doi.org/10.1016/j.jafrearsci.2010.03.003 DOI: https://doi.org/10.1016/j.jafrearsci.2010.03.003
Yidana, S. M., & Yidana, A. (2010). Assessing water quality using water quality index and multivariate analysis. Environmental Earth Science, 59, 1461–1473. https://doi.org/10.1007/s12665-009-0132-3 DOI: https://doi.org/10.1007/s12665-009-0132-3
Yu, G., Wang, J., Liu, L., Li, Y., Zhang, Y., & Wang, S. (2020). The analysis of groundwater nitrate pollution and health risk assessment in rural areas of Yantai China. BMC Public Health, 20, 437. https://doi.org/10.1186/s12889-020-08583-y. DOI: https://doi.org/10.1186/s12889-020-08583-y
Zhang, H. (2008). Nitrate Contamination of Groundwater in Southern Hebei Plain and its Health Risk Assessment. Institute of Geographical Sciences and Natural Resources Research, Hebei.
Zhang, Q., Xu, P., & Qian, H. (2020). Groundwater quality assessment using improved water quality index (WQI) and human health risk (HHR) evaluation in a semi-arid region of Northwest China. Exposure and Health. https://doi.org/10.1007/s12403-020-00345-w. DOI: https://doi.org/10.1007/s12403-020-00345-w
Zouaghi, T., Bédir, M., Melki, F., Gabtni, H., Gharsalli, R., Bessioud, A., & Zargouni, F. (2011). Neogene sediment deformations and tectonic features of northeastern Tunisia: evidence for paleoseismicity. Arabian Journal of Geosciences, 4(7), 1301. DOI: https://doi.org/10.1007/s12517-010-0225-z

How to Cite

Moussaoui, Z., Ben Brahim, F., Hamdi, M., Hidouri, N., Younes, H., & Bouri, S. (2025). Assessment of groundwater quality and soil salinization risks in the central Tunisia aquifer systems: water resources management and public health implications. Acque Sotterranee - Italian Journal of Groundwater, 14(1). https://doi.org/10.7343/as-2025-825

Similar Articles

<< < 4 5 6 7 8 9 10 11 12 13 > >> 

You may also start an advanced similarity search for this article.